• Title/Summary/Keyword: 평균 액적크기

Search Result 66, Processing Time 0.031 seconds

분사액체와 운용조건이 공기충돌형 인젝터에 의해 형성되는 액적의 분무특성에 미치는 영향

  • Park, Seung-Gyu;Han, Jae-Seob;Kim, Yoo;Kim, Sun-Jin;Park, Jung-Bae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.8-8
    • /
    • 1999
  • 2-유체 인젝터의 분무연소에 대한 통찰 및 구조에 대한 이해와 연료-공기 혼합과 연소반응의 물리적 이해에 필요한 수치적 모델의 개발 및 검증을 위해서는 2유체 시스템에서 액체 및 기체 각각의 기본적 특성인 액적크기, 액적속도, 액적의 질량플럭스(flux), 가스상의 속도측정 등이 필요하다. 특히, 액체분무에서는 액적의 크기를 예측하는 것이 매우 중요한 과제이며, 액적의 크기에 영향을 주는 인자들로는 노즐의 형태, 분사액체의 물성치(점도, 표면장력, 밀도), 주위기체의 조건(온도, 압력, 응축과 증발현상), 분사압력 등이 있다. 그러나, 실제 분무액적의 크기는 분포를 가지므로 같은 SMD를 가지더라도 그 분포의 정도는 크게 다를 수 있어 결과적으로 분무액적의 크기를 평균값만으로 표현하는 것은 불충분할 뿐만 아니라 그 적용에도 한계를 가지게 된다. 따라서 분무액적의 평균크기와 함께 그 분포의 정도 등을 함께 나타내려는 시도가 많은 과학자들에 의하여 연구되었다.

  • PDF

Analysis of Correclations between Flow Rate, Pressure and Average Size of Droplet with Hydraulic Diameter of Water Curtain Nozzle (수막설비용 노즐의 수력직경 변화에 따른 방사유량, 방사압 그리고 액적의 평균 크기 상관관계 분석)

  • Park, Jung Wook;Shin, Yeon Je;You, Woo Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.317-323
    • /
    • 2020
  • In this study, the correlations between flow rate, exhaust pressure, and droplet mean diameter with the shape factor of a water curtain nozzle were investigated. To analyze the flow coefficient and the distribution constant on the effects of the hydraulic diameter, five nozzles (D5W3, D5W6, D5W8, D4W6, and D7W6) were mocked up with a consideration of the internal diameter and width. The results showed that the flow coefficient increased in proportion to the constant 0.79 and 62.8 of the hydraulic diameters according to the diameter. As the nozzle width increased, the average droplet size decreased to the -0.235 exponential of the pressure. The average volume was reduced, in which the size distribution of the volume indeterminate decreased with increasing pressure for the same nozzle of the water-curtain. The distribution constants of droplet increased in proportion to the 0.258 exponential of the hydraulic diameter and 244.21. These results are expected to be useful to the design of pressure, flow meter, and average droplet size from a water curtain nozzle to predict the flow characteristics.

A Study on the Effects of Ultrasonic forced to a Twin-Fluid Spray (2유체 분무에 가진된 초음파 영향에 관한 연구)

  • 나우정;주은선;정진도;송민근;이경열
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.98-103
    • /
    • 2002
  • 초음파 비가진 시인 상용분무와 초음파가진 시인 개질분무, 간접진동분무, 간접진동 및 개질의 겸용분무의 네가지 경우 모두에서 분무액적의 평균직경 및 SMD가 전 영역에 걸쳐서 노즐 글에서 분무방향으로 멀어질수록 조금씩 증가했으며, 또한 초음파 비 가진시인 상용분무 경우가 초음파 가진 세경우에 비해 크게 나타났다. 초음파 가진 세가지 경우에서는 간접진동 및 개질법 겸용의 경우에서 분무액적의 미세화가 가장 우세하게 나타났다. 이는 초음파가 분무 축방향 전영역에 걸쳐서 분무액적의 미세화에 친화적임을 입증한다. 나. 분무 방향 축에서 반경 방향으로 갈수록 분무 액적의 평균 직경과 SMD는 감소하고 있으며, 반경방향 전 영역에 걸쳐서 상용 분무시의 액적이 가장 크게, 초음파겸용 경우에서 가장 작게 나타나고 있다. 이는 초음파가 분무 내부 전 영역에 걸쳐 액적의 미세화에 친화적임을 증명한다. 다. 분무액적의 크기에 따른 분무 분포도 비교에서 네가지 경우 모두에서 축 방향 거리가 멀수록 분무액적의 크기가 다소 증가함을 보였고, 축에서 반경 방향으로는 분무액적의 크기가 다소 감소함을 보이고 있다. 상용 분무와 초음파 분무의 비교에서 초음파 겸용 가진시는 상용 분무 때 보다 분무 영역 전반에 걸쳐서 미세화가 뚜렷이 우세함을 보였다.

  • PDF

Spray Characteristics of Coaxial Swirl Injector under Ambient High Pressure Conditions (고압환경에서 동축 와류형 분사기의 분무특성)

  • Lim Byoungjik;Kim Jong-Gyu;Moon Il-Yoon;Kim Seung-Han;Han Yeoung-Min;Seol Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.288-291
    • /
    • 2004
  • The spray characteristics of coaxial swirl injector under ambient high pressure conditions were investigated in this paper. Three injectors were used to study the effect of recess length and fuel injector type(open or closed). In this research, experimental conditions(ambient gas density) were calculated by Buckingham Pi-theory and spray characteristics of the injectors were represented by mass flow rate according to the injection pressure, the spray angle, mass distribution, and mean diameter of droplet.

  • PDF

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (수직분사제트에서 액적크기특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.59-63
    • /
    • 2006
  • A direct photograph measurement technique was used to determine the spatial distribution of the spray droplet diameter in subsonic crossflow and it also obtain that SMD distribution by using PLLIF technique. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of this research are getting a droplet distribution and drop size measurement of normal flow and compare with the other flow effects. Although the study showed visually that drop size were spatially dependent of Air-stream velocity, fuel injection velocity, and normalized distance from the injector exit length.(x/d, y/d) There are also difference characteristics between cavitation, hydraulic flip and the normal flow.

  • PDF

Atomization Characteristics of Small LRE-Injector Spray According to Injection Pressure Variation (소형 액체로켓엔진 인젝터 분무의 분사압력 변이에 따른 미립화 특성)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Park, Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.125-128
    • /
    • 2008
  • Atomization characteristics of small LRE-injector spray are investigated by using dual-mode phase Doppler anemometry (DPDA). Velocity, size, number density, and volume flux were measured at various injection pressures along the radial distance to make a close inquiry into spatial distribution characteristic of spray droplets. As the injection pressure increases, the velocity, turbulence intensity, number density, and volume flux of spray droplets become higher, whereas the droplet size ($D_{10}$ or $D_{32}$) gets smaller. Also, velocity and volume flux are proportional to Sauter mean diameter (SMD, $D_{32}$).

  • PDF

Effect of liquid viscosity on the degree of uniformity of drops from swirl spray nozzles (와류 분무 노즐에 의해 형성되는 액적들의 균일도에 액체의 점도가 미치는 영향)

  • 이상용;김인구;조한권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.538-546
    • /
    • 1989
  • Effect of liquid viscosity was studied experimentally on the drop size distributions of the liquid sprays from swirl atomizers. Glycerine-Water mixtures were used as test fluids for the experiments. Drop sizes of the liquid sprays were measured with the light scattering method. The concept of the standard deviation was introduced to represent the degree of uniformity of the drop size distributions. Experimental results show that the spray drops become coarser and less uniform with the liquid of higher viscosity. The effect of viscosity on the Sauter mean diameter and the standard deviation appeared to be more significant with the lower injection pressure. It was also confirmed that the Sauter mean diameter increases with the increase of the liquid viscosity and with the decrease of the injection pressure.

Numerical Simulations on Combustion Considering Propellant Droplet Atomization and Evaporation of 500 N Class Hydrogen Peroxide / Kerosene Rocket Engine (500 N급 과산화수소/케로신 로켓엔진의 추진제 액적 분무와 증발을 고려한 연소 수치해석)

  • Ha, Seong-Up;Lee, Seon-Mi;Moon, In-Sang;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.862-871
    • /
    • 2012
  • The numerical simulations on 500-N class rocket engine using 96% hydrogen peroxide and kerosene have been conducted, considering atomization, evaporation, mixing and combustion of its propellants. The grid containing 1/6 part of combustion chamber has been generated and it is assumed that 3 kinds of liquid-phase propellants (kerosene, hydrogen peroxide and water) were injected as hollow cone spray pattern, using Rosin-Rammler function for distribution of droplet diameter. For the calculation of combustion the eddy-dissipation model was applied. Owing to small size of combustion chamber and large specific heat / latent heat of hydrogen peroxide and water the propulsion characteristics were highly influenced by the size of droplet particles, and in this analysis the engine with droplet particles of 30 micron in average has shown the best propulsion performance.

Effect of Nozzle Tip Size on the Preparation of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process (분무열분해 공정에 의한 코발트 산화물 나노 분체 제조에 미치는 노즐 팁 크기의 영향)

  • Kim, Dong Hee;Yu, Jae Keun
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.41-49
    • /
    • 2016
  • The present study was intended to prepare cobalt oxide ($Co_3O_4$) powder of average particle size 50 nm or less by spray pyrolysis reaction using the raw cobalt chloride ($CoCl_2$) solution, in order to identify the change in the nature of the particles according to the change in the nozzle tip size. When the nozzle tip was 1 mm, it turned out that most of the droplets were spherical and the surface showed very tight structure. The average particle size of the finally formed particles was 20-30 nm. When the nozzle tip size was 2 mm, some of the droplets formed were spherical, but a considerable part of them showed severely disrupted form. particles formed showed an average particle size of 30 - 40 nm. For the nozzle tip size of 5 mm, spherical droplets were almost non-existent and most were in badly fragmented state. The tightness of surface structure of the droplets has greatly been reduced compared with other nozzle tip sizes. Average size of the formed particles was about 25 nm. As the nozzle tip size increased from 1 mm to 2 mm and 3 mm, the intensities of the XRD peaks have changed little, but significantly been reduced when the nozzle tip size increased to 5mm. As the nozzle tip size increased from 1 mm to 2 mm, the specific surface area of the particles decreased, but the nozzle tip size increased to 5mm, the specific surface area remarkably increased.

The Effects of Barley Tea Concentration and Atomizing Pressure on the Atomization with Two Fluid Nozzle Spray Gun (이류식(二流式) 노즐에서 보리차 추출액(抽出液)의 농도(濃度) 및 분무(噴霧) 압력(壓力)이 분무화(噴霧化)에 미치는 영향(影響))

  • Lee, Jeong-Cheol;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.342-347
    • /
    • 1983
  • The effects of barley tea concentration and atomizing air pressure on the size, homogeneity and distribution of the sprayed droplets were investigated. An equation relating mean diameter (${\overline{D}}$) with the concentration where the coefficient a and b were determined empirically. As the operating air pressure was increased, the mean diameter of the droplets decreased and finally reached the limiting mean diameter, $36{\mu}m$ at 15.7% barley tea concentration. The homogeneity of the droplets increased with the operating air pressure, increase and it was decreased steadily as the soluble solid concentration increased up to 20% and markedly over 20% at every operating air pressure. The distribution ($P_D$) of sprayed droplets related with the droplet size as the following exponential equation; $P_D$ = e 1nD + f where e and f are empirical constants.

  • PDF