DOI QR코드

DOI QR Code

Effect of Nozzle Tip Size on the Preparation of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process

분무열분해 공정에 의한 코발트 산화물 나노 분체 제조에 미치는 노즐 팁 크기의 영향

  • Received : 2016.10.24
  • Accepted : 2016.12.07
  • Published : 2016.12.31

Abstract

The present study was intended to prepare cobalt oxide ($Co_3O_4$) powder of average particle size 50 nm or less by spray pyrolysis reaction using the raw cobalt chloride ($CoCl_2$) solution, in order to identify the change in the nature of the particles according to the change in the nozzle tip size. When the nozzle tip was 1 mm, it turned out that most of the droplets were spherical and the surface showed very tight structure. The average particle size of the finally formed particles was 20-30 nm. When the nozzle tip size was 2 mm, some of the droplets formed were spherical, but a considerable part of them showed severely disrupted form. particles formed showed an average particle size of 30 - 40 nm. For the nozzle tip size of 5 mm, spherical droplets were almost non-existent and most were in badly fragmented state. The tightness of surface structure of the droplets has greatly been reduced compared with other nozzle tip sizes. Average size of the formed particles was about 25 nm. As the nozzle tip size increased from 1 mm to 2 mm and 3 mm, the intensities of the XRD peaks have changed little, but significantly been reduced when the nozzle tip size increased to 5mm. As the nozzle tip size increased from 1 mm to 2 mm, the specific surface area of the particles decreased, but the nozzle tip size increased to 5mm, the specific surface area remarkably increased.

본 연구에서는 코발트 염화물($CoCl_2$) 용액을 원료로 하여 분무열분해 반응에 의하여 평균입도 50 nm 이하의 코발트 산화물($Co_3O_4$) 분말을 제조하였으며 원료용액이 분사되는 노즐 팁의 크기 변화에 따른 입자들의 특성 변화를 파악하였다. 노즐 팁의 크기가 1 mm인 경우에는 형성된 대부분의 액적형태는 구형을 이루고 있으며 표면은 매우 치밀한 조직을 나타내고 있음을 알 수 있었다. 최종 형성된 입자들의 평균입도는 20 ~ 30 nm이었다. 노즐 팁의 크기가 2 mm인 경우에는 형성된 액적형태는 일부는 구형을 이루고 있었지만 상당 부분은 심하게 분열된 형태를 나타내고 있었다. 노즐 팁 크기가 5 mm인 경우에는 구형을 이루는 액적형태는 거의 존재하지 않았으며 거의 대부분 심하게 분열된 상태를 나타내고 있었다. 액적형태의 표면조직은 다른 노즐 팁 경우에 비하여 치밀함이 크게 감소하였다. 형성된 입자들의 평균입도는 약 25 nm이었다. 노즐 팁 크기가 1 mm로부터 2 mm 및 3 mm로 증가함에 따라 XRD 피크들의 강도는 거의 변화가 없는 반면 노즐 팁 크기가 5 mm로 증가되는 경우에는 피크의 강도가 현저히 감소하게 되었다. 노즐 팁 크기가 1 mm로부터 2 mm 로 증가함에 따라 입자들의 비표면적은 감소하였으며 5 mm로 증가되는 경우에는 비표면적이 현저히 증가하였다.

Keywords

References

  1. T. Nakamura and Y. Okano, 1996: Electro Magnetic Properties of Mn-Zn Ferrite, Proceeding of the ICF 7, C1, pp 101.
  2. C.P. Udawatte and K. Yanagisawa, 2001: Fabrication of Low Porosity Indium Tin Oxide Ceramics in Air from Hydrothermally Prepared Powder, J. Am. Ceram. Soc., 84, pp 251-253. https://doi.org/10.1111/j.1151-2916.2001.tb00645.x
  3. J.K. Yu and D.H. Kim, 2013: Infleunce of nozzle tip Size on the Preparation of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process, Kor. J. Mater. Res., 23, pp 81-88. https://doi.org/10.3740/MRSK.2013.23.2.081
  4. J.K. Yu and D.H. Kim, 2013: The Preparation of Nano Size Nickel Oxide Powder by Spray Pyrolysis Process, Powder Tech., 235, pp 1030-1037. https://doi.org/10.1016/j.powtec.2012.11.031
  5. J.K. Yu and D.H. Kim, 2012: The Effects of Reaction Factors on the Fabrication of Nano-Sized Indium Tin Oxide Powder by Spray Pyrolysis Process, J. of Nanosci. Nanotechnol., 12, pp 1545-1550. https://doi.org/10.1166/jnn.2012.4625
  6. J.K. Yu and D.H. Kim, 2009: Inflences of Reaction Factors on the Nano-Sized Tin Powder by Spray Pyrolysis Process, J. Ceram. Soc. Jpn., 117, pp 1078-1084. https://doi.org/10.2109/jcersj2.117.1078
  7. J.K. Yu, S.G. Kang, K.C. Chung. J.S. Han and D.H. Kim, 2007: Fabrication of Nano-Sized ITO Powder from Waste ITO Target by Spray Pyrolysis Process, Mater. Trans., 48, pp 249-257. https://doi.org/10.2320/matertrans.48.249
  8. J.K. Yu, S.G. Kang, J.B. Kim, J.Y. Kim, J.S. Han, J.W. Yoo, S.W. Lee and Z.S. Ahn, 2006: Nano-Sized Indium Oxide Powder Synthesized by Spray Pyrolysis Process, Mater. Trans., 47, pp 1838-1846. https://doi.org/10.2320/matertrans.47.1838
  9. J.K. Yu, K.W. Kim, T.S. Kim and J.Y. Kim, 2005: Fabrication of Nano-Sized Powders from Waste Solution by Spray Pyrolysis Process, Mater. Trans., 46, pp 1695-1700. https://doi.org/10.2320/matertrans.46.1695
  10. D. Majumdar, T.A. Shefelbine and T.T. Kodas, 1996: Copper(I) Oxide Powder Generation by Spray Pyrolysis, J. Mater. Res., 11, pp 2861-2868. https://doi.org/10.1557/JMR.1996.0361
  11. G.L. Messing, S.C. Zhang and G.V. Jayanthi, 1993: Ceramic Powder Synthesis by Spray Pyrolysis, J. Am. Ceram. Soc., 76, pp 2707-2726. https://doi.org/10.1111/j.1151-2916.1993.tb04007.x
  12. O. Kubaschewski and C.B. Alcock: "Metallurgical Thermochemistry", Pergamon Press, pp 379-380.