• Title/Summary/Keyword: 평균 아이템 유사도

Search Result 9, Processing Time 0.023 seconds

Selecting Marketing Domains and Customer Groups by Pre-evaluation on Recommendation (추천 선행평가에 의한 마케팅 도메인 및 고객군 선정)

  • 윤찬식;이수원
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.220-229
    • /
    • 2002
  • 협력적 추천 기법은 유사한 이웃의 선호도를 이용하여 고객에게 개인화된 아이템을 추천해 주는 방법으로 비교적 높은 정확도를 보이며 추천 시스템의 중심으로 연구되어져 왔다. 그러나, 지금까지의 추천 시스템은 도메인의 특성을 제대로 고려하지 못한채 추천을 시행함으로써 특정 도메인에서 추천의 정확도가 떨어지는 문제점이 발생하였다. 이러한 문제점들을 보완하기 위하여 본 논문에서는 평균 고객 유사도, 평균 아이템 유사도, 밀집도 등의 추천 선행 평가 척도를 제안하고, 추천 선행평가 척도와 추천의 정확도와의 상관관계를 보이며, 이를 이용하여 짧은 수행시간 안에 추천 적용이 가능한 마케팅 도메인 및 고객군을 선정하는 방법을 제시한다.

  • PDF

A Empirical Study on Recommendation Schemes Based on User-based and Item-based Collaborative Filtering (사용자 기반과 아이템 기반 협업여과 추천기법에 관한 실증적 연구)

  • Ye-Na Kim;In-Bok Choi;Taekeun Park;Jae-Dong Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.714-717
    • /
    • 2008
  • 협업여과 추천기법에는 사용자 기반 협업여과와 아이템 기반 협업여과가 있으며, 절차는 유사도 측정, 이웃 선정, 예측값 생성 단계로 이루어진다. 유사도 측정 단계에는 유클리드 거리(Euclidean Distance), 코사인 유사도(Cosine Similarity), 피어슨 상관계수(Pearson Correlation Coefficient) 방법 등이 있고, 이웃 선정 단계에는 상관 한계치(Correlation-Threshold), 근접 N 이웃(Best-N-Neighbors) 방법 등이 있다. 마지막으로 예측값 생성 단계에는 단순평균(Simple Average), 가중합(Weighted Sum), 조정 가중합(Adjusted Weighted Sum) 등이 있다. 이처럼 협업여과 추천기법에는 다양한 기법들이 사용되고 있다. 따라서 본 논문에서는 사용자 기반 협업여과와 아이템 기반 협업여과 추천기법에 사용되는 유사도 측정 기법과 예측값 생성 기법의 최적화된 조합을 알아보기 위해 성능 실험 및 비교 분석을 하였다. 실험은 GroupLens의 MovieLens 데이터 셋을 활용하였고 MAE(Mean Absolute Error)값을 이용하여 추천기법을 비교 하였다. 실험을 통해 유사도 측정 기법과 예측값 생성 기법의 최적화된 조합을 찾을 수 있었고, 사용자 기반 협업여과와 아이템 기반 협업여과의 성능비교를 통해 아이템 기반 협업여과의 성능이 보다 우수했음을 확인 하였다.

Hybrid Preference Prediction Technique Using Weighting based Data Reliability for Collaborative Filtering Recommendation System (협업 필터링 추천 시스템을 위한 데이터 신뢰도 기반 가중치를 이용한 하이브리드 선호도 예측 기법)

  • Lee, O-Joun;Baek, Yeong-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.61-69
    • /
    • 2014
  • Collaborative filtering recommendation creates similar item subset or similar user subset based on user preference about items and predict user preference to particular item by using them. Thus, if preference matrix has low density, reliability of recommendation will be sharply decreased. To solve these problems we suggest Hybrid Preference Prediction Technique Using Weighting based Data Reliability. Preference prediction is carried out by creating similar item subset and similar user subset and predicting user preference by each subset and merging each predictive value by weighting point applying model condition. According to this technique, we can increase accuracy of user preference prediction and implement recommendation system which can provide highly reliable recommendation when density of preference matrix is low. Efficiency of this system is verified by Mean Absolute Error. Proposed technique shows average 21.7% improvement than Hao Ji's technique when preference matrix sparsity is more than 84% through experiment.

The User Information-based Mobile Recommendation Technique (사용자 정보를 이용한 모바일 추천 기법)

  • Yun, So-Young;Youn, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.379-386
    • /
    • 2014
  • As the use of mobile device is increasing rapidly, the number of users is also increasing. However, most of the app stores are using recommendation of simple ranking method, so the accuracy of recommendation is lower. To recommend an item that is more appropriate to the user, this paper proposes a technique that reflects the weight of user information and recent preference degree of item. The proposed technique classifies the data set by categories and then derives a predicted value by applying the user's information weight to the collaborative filtering technique. To reflect the recent preference degree of item by categories, the average of items' rating values in the designated period is computed. An item is recommended by combining the two result values. The experiment result indicated that the proposed method has been more enhanced the accuracy, appropriacy, compared to item-based, user-based method.

Scalable Collaborative Filtering Technique based on Adaptive Clustering (적응형 군집화 기반 확장 용이한 협업 필터링 기법)

  • Lee, O-Joun;Hong, Min-Sung;Lee, Won-Jin;Lee, Jae-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.73-92
    • /
    • 2014
  • An Adaptive Clustering-based Collaborative Filtering Technique was proposed to solve the fundamental problems of collaborative filtering, such as cold-start problems, scalability problems and data sparsity problems. Previous collaborative filtering techniques were carried out according to the recommendations based on the predicted preference of the user to a particular item using a similar item subset and a similar user subset composed based on the preference of users to items. For this reason, if the density of the user preference matrix is low, the reliability of the recommendation system will decrease rapidly. Therefore, the difficulty of creating a similar item subset and similar user subset will be increased. In addition, as the scale of service increases, the time needed to create a similar item subset and similar user subset increases geometrically, and the response time of the recommendation system is then increased. To solve these problems, this paper suggests a collaborative filtering technique that adapts a condition actively to the model and adopts the concepts of a context-based filtering technique. This technique consists of four major methodologies. First, items are made, the users are clustered according their feature vectors, and an inter-cluster preference between each item cluster and user cluster is then assumed. According to this method, the run-time for creating a similar item subset or user subset can be economized, the reliability of a recommendation system can be made higher than that using only the user preference information for creating a similar item subset or similar user subset, and the cold start problem can be partially solved. Second, recommendations are made using the prior composed item and user clusters and inter-cluster preference between each item cluster and user cluster. In this phase, a list of items is made for users by examining the item clusters in the order of the size of the inter-cluster preference of the user cluster, in which the user belongs, and selecting and ranking the items according to the predicted or recorded user preference information. Using this method, the creation of a recommendation model phase bears the highest load of the recommendation system, and it minimizes the load of the recommendation system in run-time. Therefore, the scalability problem and large scale recommendation system can be performed with collaborative filtering, which is highly reliable. Third, the missing user preference information is predicted using the item and user clusters. Using this method, the problem caused by the low density of the user preference matrix can be mitigated. Existing studies on this used an item-based prediction or user-based prediction. In this paper, Hao Ji's idea, which uses both an item-based prediction and user-based prediction, was improved. The reliability of the recommendation service can be improved by combining the predictive values of both techniques by applying the condition of the recommendation model. By predicting the user preference based on the item or user clusters, the time required to predict the user preference can be reduced, and missing user preference in run-time can be predicted. Fourth, the item and user feature vector can be made to learn the following input of the user feedback. This phase applied normalized user feedback to the item and user feature vector. This method can mitigate the problems caused by the use of the concepts of context-based filtering, such as the item and user feature vector based on the user profile and item properties. The problems with using the item and user feature vector are due to the limitation of quantifying the qualitative features of the items and users. Therefore, the elements of the user and item feature vectors are made to match one to one, and if user feedback to a particular item is obtained, it will be applied to the feature vector using the opposite one. Verification of this method was accomplished by comparing the performance with existing hybrid filtering techniques. Two methods were used for verification: MAE(Mean Absolute Error) and response time. Using MAE, this technique was confirmed to improve the reliability of the recommendation system. Using the response time, this technique was found to be suitable for a large scaled recommendation system. This paper suggested an Adaptive Clustering-based Collaborative Filtering Technique with high reliability and low time complexity, but it had some limitations. This technique focused on reducing the time complexity. Hence, an improvement in reliability was not expected. The next topic will be to improve this technique by rule-based filtering.

Building Error-Reflected Models for Collaborative Filtering Recommender System (협업적 여과 추천 시스템을 위한 에러반영 모델 구축)

  • Kim, Heung-Nam;Jo, Geun-Sik
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.451-462
    • /
    • 2009
  • Collaborative Filtering (CF), one of the most successful technologies among recommender systems, is a system assisting users in easily finding the useful information. However, despite its success and popularity, CF encounters a serious limitation with quality evaluation, called cold start problems. To alleviate this limitation, in this paper, we propose a unique method of building models derived from explicit ratings and applying the models to CF recommender systems. The proposed method is divided into two phases, an offline phase and an online phase. First, the offline phase is a building pre-computed model phase in which most of tasks can be conducted. Second, the online phase is either a prediction or recommendation phase in which the models are used. In a model building phase, we first determine a priori predicted rating and subsequently identify prediction errors for each user. From this error information, an error-reflected model is constructed. The error-reflected model, which is reflected average prior prediction errors of user neighbors and item neighbors, can make accurate predictions in the situation where users or items have few opinions; this is known as the cold start problems. In addition, in order to reduce the re-building tasks, the error-reflected model is designed such that the model is updated effectively and users'new opinions are reflected incrementally, even when users present a new rating feedback.

Performance analysis of Frequent Itemset Mining Technique based on Transaction Weight Constraints (트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 기법의 성능분석)

  • Yun, Unil;Pyun, Gwangbum
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • In recent years, frequent itemset mining for considering the importance of each item has been intensively studied as one of important issues in the data mining field. According to strategies utilizing the item importance, itemset mining approaches for discovering itemsets based on the item importance are classified as follows: weighted frequent itemset mining, frequent itemset mining using transactional weights, and utility itemset mining. In this paper, we perform empirical analysis with respect to frequent itemset mining algorithms based on transactional weights. The mining algorithms compute transactional weights by utilizing the weight for each item in large databases. In addition, these algorithms discover weighted frequent itemsets on the basis of the item frequency and weight of each transaction. Consequently, we can see the importance of a certain transaction through the database analysis because the weight for the transaction has higher value if it contains many items with high values. We not only analyze the advantages and disadvantages but also compare the performance of the most famous algorithms in the frequent itemset mining field based on the transactional weights. As a representative of the frequent itemset mining using transactional weights, WIS introduces the concept and strategies of transactional weights. In addition, there are various other state-of-the-art algorithms, WIT-FWIs, WIT-FWIs-MODIFY, and WIT-FWIs-DIFF, for extracting itemsets with the weight information. To efficiently conduct processes for mining weighted frequent itemsets, three algorithms use the special Lattice-like data structure, called WIT-tree. The algorithms do not need to an additional database scanning operation after the construction of WIT-tree is finished since each node of WIT-tree has item information such as item and transaction IDs. In particular, the traditional algorithms conduct a number of database scanning operations to mine weighted itemsets, whereas the algorithms based on WIT-tree solve the overhead problem that can occur in the mining processes by reading databases only one time. Additionally, the algorithms use the technique for generating each new itemset of length N+1 on the basis of two different itemsets of length N. To discover new weighted itemsets, WIT-FWIs performs the itemset combination processes by using the information of transactions that contain all the itemsets. WIT-FWIs-MODIFY has a unique feature decreasing operations for calculating the frequency of the new itemset. WIT-FWIs-DIFF utilizes a technique using the difference of two itemsets. To compare and analyze the performance of the algorithms in various environments, we use real datasets of two types (i.e., dense and sparse) in terms of the runtime and maximum memory usage. Moreover, a scalability test is conducted to evaluate the stability for each algorithm when the size of a database is changed. As a result, WIT-FWIs and WIT-FWIs-MODIFY show the best performance in the dense dataset, and in sparse dataset, WIT-FWI-DIFF has mining efficiency better than the other algorithms. Compared to the algorithms using WIT-tree, WIS based on the Apriori technique has the worst efficiency because it requires a large number of computations more than the others on average.

A Generalized Adaptive Deep Latent Factor Recommendation Model (일반화 적응 심층 잠재요인 추천모형)

  • Kim, Jeongha;Lee, Jipyeong;Jang, Seonghyun;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.249-263
    • /
    • 2023
  • Collaborative Filtering, a representative recommendation system methodology, consists of two approaches: neighbor methods and latent factor models. Among these, the latent factor model using matrix factorization decomposes the user-item interaction matrix into two lower-dimensional rectangular matrices, predicting the item's rating through the product of these matrices. Due to the factor vectors inferred from rating patterns capturing user and item characteristics, this method is superior in scalability, accuracy, and flexibility compared to neighbor-based methods. However, it has a fundamental drawback: the need to reflect the diversity of preferences of different individuals for items with no ratings. This limitation leads to repetitive and inaccurate recommendations. The Adaptive Deep Latent Factor Model (ADLFM) was developed to address this issue. This model adaptively learns the preferences for each item by using the item description, which provides a detailed summary and explanation of the item. ADLFM takes in item description as input, calculates latent vectors of the user and item, and presents a method that can reflect personal diversity using an attention score. However, due to the requirement of a dataset that includes item descriptions, the domain that can apply ADLFM is limited, resulting in generalization limitations. This study proposes a Generalized Adaptive Deep Latent Factor Recommendation Model, G-ADLFRM, to improve the limitations of ADLFM. Firstly, we use item ID, commonly used in recommendation systems, as input instead of the item description. Additionally, we apply improved deep learning model structures such as Self-Attention, Multi-head Attention, and Multi-Conv1D. We conducted experiments on various datasets with input and model structure changes. The results showed that when only the input was changed, MAE increased slightly compared to ADLFM due to accompanying information loss, resulting in decreased recommendation performance. However, the average learning speed per epoch significantly improved as the amount of information to be processed decreased. When both the input and the model structure were changed, the best-performing Multi-Conv1d structure showed similar performance to ADLFM, sufficiently counteracting the information loss caused by the input change. We conclude that G-ADLFRM is a new, lightweight, and generalizable model that maintains the performance of the existing ADLFM while enabling fast learning and inference.

A Fuzzy-AHP-based Movie Recommendation System using the GRU Language Model (GRU 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템)

  • Oh, Jae-Taek;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.19 no.8
    • /
    • pp.319-325
    • /
    • 2021
  • With the advancement of wireless technology and the rapid growth of the infrastructure of mobile communication technology, systems applying AI-based platforms are drawing attention from users. In particular, the system that understands users' tastes and interests and recommends preferred items is applied to advanced e-commerce customized services and smart homes. However, there is a problem that these recommendation systems are difficult to reflect in real time the preferences of various users for tastes and interests. In this research, we propose a Fuzzy-AHP-based movies recommendation system using the Gated Recurrent Unit (GRU) language model to address a problem. In this system, we apply Fuzzy-AHP to reflect users' tastes or interests in real time. We also apply GRU language model-based models to analyze the public interest and the content of the film to recommend movies similar to the user's preferred factors. To validate the performance of this recommendation system, we measured the suitability of the learning model using scraping data used in the learning module, and measured the rate of learning performance by comparing the Long Short-Term Memory (LSTM) language model with the learning time per epoch. The results show that the average cross-validation index of the learning model in this work is suitable at 94.8% and that the learning performance rate outperforms the LSTM language model.