DOI QR코드

DOI QR Code

Hybrid Preference Prediction Technique Using Weighting based Data Reliability for Collaborative Filtering Recommendation System

협업 필터링 추천 시스템을 위한 데이터 신뢰도 기반 가중치를 이용한 하이브리드 선호도 예측 기법

  • 이오준 (단국대학교 소프트웨어학과) ;
  • 백영태 (김포대학교 멀티미디어과)
  • Received : 2014.04.01
  • Accepted : 2014.05.03
  • Published : 2014.05.31

Abstract

Collaborative filtering recommendation creates similar item subset or similar user subset based on user preference about items and predict user preference to particular item by using them. Thus, if preference matrix has low density, reliability of recommendation will be sharply decreased. To solve these problems we suggest Hybrid Preference Prediction Technique Using Weighting based Data Reliability. Preference prediction is carried out by creating similar item subset and similar user subset and predicting user preference by each subset and merging each predictive value by weighting point applying model condition. According to this technique, we can increase accuracy of user preference prediction and implement recommendation system which can provide highly reliable recommendation when density of preference matrix is low. Efficiency of this system is verified by Mean Absolute Error. Proposed technique shows average 21.7% improvement than Hao Ji's technique when preference matrix sparsity is more than 84% through experiment.

협업 필터링 추천은 사용자의 아이템에 대한 선호도를 기반으로 유사 아이템 집합 또는 유사 사용자 집합을 생성하고 이를 이용해 사용자의 특정 아이템에 대한 선호도를 예측한다. 따라서 선호도 행렬이 희박할 경우, 추천의 신뢰도는 급격히 낮아진다. 본 논문에서는 위 문제를 해결하기 위해 데이터 신뢰도 기반 가중치를 이용한 하이브리드 선호도 예측 기법을 제안한다. 선호도 예측은 유사 아이템 집합과 유사 사용자 집합을 모두 생성하고 각 집합을 통해 사용자의 선호도를 예측하며, 모델의 상황을 반영한 가중치를 이용해 각 예측치를 병합하여 수행된다. 이 기법은 사용자 선호도 예측 정확도를 높이며 선호도 행렬 희박도가 높은 상황에도 추천 서비스의 신뢰도를 유지할 수 있도록 한다. 이 기법을 바탕으로 추천 시스템을 구현하고 절대평균오차를 기준으로 서비스 신뢰도 향상을 측정하였다. 실험에서 본 기법은 Hao Ji가 제안한 기존의 기법에 비해 선호도 행렬 희박도가 84% 이상인 상황에서 평균 21.7%의 성능 향상을 보여 효과적으로 행렬 희박도 문제를 해소할 수 있음을 검증하였다.

Keywords

References

  1. J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, "Evaluating collaborative filtering recommender systems," ACM Transactions on Information Systems, Vol.22, No.1, 2004, pp. 5-53. https://doi.org/10.1145/963770.963772
  2. Y. Song, C. L. Giles, "Efficient user preference predictions using collaborative filtering," Pattern Recognition, 2008. ICPR 2008. 19th International Conference, 2008, pp. 1-4.
  3. J. Reed, C. H. Lee, "Preference Music Ratings Prediction Using Tokenization and Minimum Classification Error Training," Audio, Speech, and Language Processing, IEEE Transactions, Vol. 19, No. 8, 2011, pp. 2294-2303. https://doi.org/10.1109/TASL.2011.2129509
  4. H. Ji, J. Li, C. Ren, and M. He, "Hybrid collaborative filtering model for improved recommendation," Service Operations and Logistics, and Informatics (SOLI), 2013 IEEE International Conference, 2013, pp. 142-145.
  5. K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, "Eigentaste: a constant time collaborative filtering algorithm," Information Retrieval, Vol.4, No.2, 2001, pp. 133-151. https://doi.org/10.1023/A:1011419012209
  6. M. O. Connor, J. Herlocker, "Clustering Items for Collaborative Filtering," Proc. of the ACM SIGIR Workshop on Recommender Systems, Berkeley, CA, 1999.
  7. G. Groh, C. Ehming, "Recommendations in Taste Related Domains: Collaborative filtering vs. Social filtering," Proc. of GROUP'07, 2007, pp. 127-136.
  8. J. L. Herlocker, J. A. Konstan, and J. T. Riedl, "An Empirical Analysis of Design Choices in Neighborhood-based Collaborative Filtering Systems," Information Retrieval, Vol. 5, 2002, pp. 287-310. https://doi.org/10.1023/A:1020443909834
  9. Z. Huang, H. Chen, and D. Zeng, "Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering," ACM Trans. Information Systems, Vol.22, No.1, 2004, pp. 116-142. https://doi.org/10.1145/963770.963775
  10. J. Konstan, D. B. Miller, and D. Maltz, J. Herlocker, L. Gordon, and J. Ridl, "GroupLens: Applying collaborative filtering to Usenet news," Communication of ACM, Vol.40, No.3, 1997, pp. 77-87. https://doi.org/10.1145/245108.245126
  11. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, "Item-based collaborative filtering recommendation algorithm," Proc. of the 10th international conference on World Wide Web, 2001, pp. 285-295.
  12. P. Melville, R. J. Mooney, and R. Nagarajan, "Content-Boosted Collaborative Filtering for Improved Recommendations," Proc. of the Eighteenth National Conference on Artificial Intelligence, Edmonton, Canada, 2002, pp. 187-192.
  13. M. Pazzani, "A Framework for Collaborative, Content-Based and Demographic Filtering," Artificial Intelligence Review, 1999, pp. 398-408.
  14. B. Jin, Y. Cho, and K. Ryu, "Personalized e-commerce recommendation system using RFM method and association rules," Journal of the Korea Society of Computer and Information, Vol.15, No.12, 2010, pp. 227-235. https://doi.org/10.9708/jksci.2010.15.12.227
  15. D. Park, "Improved Movie Recommendation System based-on Personal Propensity and Collaborative Filtering," KIPS transactions on computer and communication systems, Vol.2, No.11, 2013, pp. 475-482. https://doi.org/10.3745/KTCCS.2013.2.11.475
  16. S. B. Park, Y. T. Baek "A Study of Story Visualization Based on Variation of Characters Relationship by Time," Journal of the Korea Society of Computer and Information, Vol.18, No.3, 2013, pp. 119-126. https://doi.org/10.9708/jksci.2013.18.3.119
  17. W. J. Lee, K. W. Kim, K. D. Boo, and J. J. Woo, "A Study on the Adoption of NAC for Guaranteeing Reliability of u-Campus Network," Journal of Korean Institute of Information Technology, Vol.7, No.4, 2009, pp. 252-258.
  18. E. S. You, S. B. Park, "Story-based Information Retrieval," Journal of Intelligence and Information Systems, Vol.19, No.4, 2013, pp. 81-96. https://doi.org/10.13088/jiis.2013.19.4.081

Cited by

  1. A location-based mobile health care facility search system for senior citizens pp.1573-0484, 2018, https://doi.org/10.1007/s11227-018-2342-5
  2. 소셜 빅데이터를 이용한 영화 흥행 요인 분석 vol.14, pp.10, 2014, https://doi.org/10.5392/jkca.2014.14.10.527