• 제목/요약/키워드: Preference Prediction

검색결과 119건 처리시간 0.024초

협력적 필터링 추천기법에서 이웃 수를 이용한 선호도 예측 정확도 향상 (Improving the prediction accuracy by using the number of neighbors in collaborative filtering)

  • 이희춘
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권3호
    • /
    • pp.505-514
    • /
    • 2009
  • 본 연구는 협력적 필터링 기법을 이용한 선호도 예측 과정에서 이웃의 수와 선호도 예측 정확도와의 관계를 분석하였다. 선호도 예측 과정에 선정된 이웃의 수를 4분위수로 4집단으로 구분하여 구분한 집단 간 선호도 예측 정확도에 차이가 나타남을 알 수 있었으며 각 집단의 예측 오차들의 평균들을 이용하여 선형의 보정함수를 제안하였다. 본 연구의 결과를 바탕으로 추천시스템에서 이웃 수를 이용한 보정함수를 이용하면 예측 정확도를 높일 수 있다.

  • PDF

협업 필터링 추천 시스템을 위한 데이터 신뢰도 기반 가중치를 이용한 하이브리드 선호도 예측 기법 (Hybrid Preference Prediction Technique Using Weighting based Data Reliability for Collaborative Filtering Recommendation System)

  • 이오준;백영태
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권5호
    • /
    • pp.61-69
    • /
    • 2014
  • 협업 필터링 추천은 사용자의 아이템에 대한 선호도를 기반으로 유사 아이템 집합 또는 유사 사용자 집합을 생성하고 이를 이용해 사용자의 특정 아이템에 대한 선호도를 예측한다. 따라서 선호도 행렬이 희박할 경우, 추천의 신뢰도는 급격히 낮아진다. 본 논문에서는 위 문제를 해결하기 위해 데이터 신뢰도 기반 가중치를 이용한 하이브리드 선호도 예측 기법을 제안한다. 선호도 예측은 유사 아이템 집합과 유사 사용자 집합을 모두 생성하고 각 집합을 통해 사용자의 선호도를 예측하며, 모델의 상황을 반영한 가중치를 이용해 각 예측치를 병합하여 수행된다. 이 기법은 사용자 선호도 예측 정확도를 높이며 선호도 행렬 희박도가 높은 상황에도 추천 서비스의 신뢰도를 유지할 수 있도록 한다. 이 기법을 바탕으로 추천 시스템을 구현하고 절대평균오차를 기준으로 서비스 신뢰도 향상을 측정하였다. 실험에서 본 기법은 Hao Ji가 제안한 기존의 기법에 비해 선호도 행렬 희박도가 84% 이상인 상황에서 평균 21.7%의 성능 향상을 보여 효과적으로 행렬 희박도 문제를 해소할 수 있음을 검증하였다.

고객 맞춤 서비스를 위한 HPPS(Hybrid Preference Prediction System) 설계 (A Design of HPPS(Hybrid Preference Prediction System) for Customer-Tailored Service)

  • 정은희;이병관
    • 한국멀티미디어학회논문지
    • /
    • 제14권11호
    • /
    • pp.1467-1477
    • /
    • 2011
  • 본 논문에서는 고객 맞춤 서비스의 선호도를 정확하게 예측하기 위하여 사용자 프로파일 분석, 사용자간 유사도 분석을 이용한 HPPS(Hybrid Preference Prediction System) 설계를 제안한다. 기존의 NBCFA(Neighborhood Based Collaborative Filtering Algorithm)과 달리, 본 논문은 첫째, 선호도 예측식에서 이웃의 상품 평가가 없을 경우 상품에 대한 평균값을 이용하도록 하였고, 둘째, 선호도 예측식에서 사용자의 특성을 분석한 가중치를 반영하도록 하였고, 끝으로, 인접 이웃을 선정할 때 유사도, 상품 평가 여부, 평가 횟수를 반영하여 HPPS에 선호도의 정확도를 향상시켰다. 따라서 첫째와 둘째의 선호도 예측식을 이용하면 HPPS의 정확도는 기존의 NBCFA에 비해 97.24% 향상되었고, 인접이웃 선정방식에서도 HPPS 시스템의 정확도가 75% 향상되었다.

Improved Algorithm for User Based Recommender System

  • Lee, Hee-Choon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권3호
    • /
    • pp.717-726
    • /
    • 2006
  • This study is to investigate the MAE of prediction value by collaborative filtering algorithm originated by GroupLens and improved algorithm. To decrease the MAE on the collaborative recommender system on user based, this research proposes the improved algorithm, which reduces the possibility of over estimation of active user's preference mean collaboratively using other user’s preference mean. The result shows the MAE of prediction by improved algorithm is better than original algorithm, so the active user's preference mean used in prediction formula is possibly over estimated.

  • PDF

A Recommender System Model Using a Neural Network Based on the Self-Product Image Congruence

  • Kang, Joo Hee;Lee, Yoon-Jung
    • 한국의류학회지
    • /
    • 제44권3호
    • /
    • pp.556-571
    • /
    • 2020
  • This study predicts consumer preference for social clothing at work, excluding uniforms using the self-product congruence theory that also establishes a model to predict the preference for recommended products that match the consumer's own image. A total of 490 Korean male office workers participated in this study. Participants' self-image and the product images of 20 apparel items were measured using nine adjective semantic scales (namely elegant, stable, sincere, refined, intense, luxury, bold, conspicuous, and polite). A model was then constructed to predict the consumer preferences using a neural network with Python and TensorFlow. The resulting Predict Preference Model using Product Image (PPMPI) was trained using product image and the preference of each product. Current research confirms that product preference can be predicted by the self-image instead of by entering the product image. The prediction accuracy rate of the PPMPI was over 80%. We used 490 items of test data consisting of self-images to predict the consumer preferences for using the PPMPI. The test of the PPMPI showed that the prediction rate differed depending on product attributes. The prediction rate of work apparel with normative images was over 70% and higher than for other forms of apparel.

협업 필터링 추천에서 대응평균 알고리즘의 예측 성능에 관한 연구 (A study on the Prediction Performance of the Correspondence Mean Algorithm in Collaborative Filtering Recommendation)

  • 이석준;이희춘
    • 경영정보학연구
    • /
    • 제9권1호
    • /
    • pp.85-103
    • /
    • 2007
  • 본 연구의 목적은 좀 더 정확한 고객 선호도 예측을 위한 협업 필터링 알고리즘의 예측 성능을 평가하기 위한 것이다. 고객 선호도 예측의 정확도를 비교하기 위하여 이웃 기반의 협업 필터링 알고리즘과 대응평균 알고리즘에 의한 고객 선호도 예측의 MAE를 비교하였다. 예측 알고리즘의 정확성을 분석하기 위하여 MovieLens 1 Million dataset을 이용하여 실험을 하였다. 각 예측 알고리즘에 사용된 유사도 가중치는 일반적으로 이용되는 피어슨 상관계수와 벡터 유사도를 이용하였으며 분석결과 대응평균 알고리즘의 예측 정확도가 이웃 기반의 협업 필터링 알고리즘의 예측 정확도 보다 우수한 것으로 나타났다. 두 알고리즘에 사용된 유사도 가중치인 피어슨 상관계수와 벡터 유사도는 두 고객이 특정 상품에 대하여 공통으로 평가한 선호도 평가치를 이용하여 계산된다. 이때 공통으로 평가한 선호도 평가치의 개수가 적으면 계산된 유사도 가중치가 과대 평가된다. 과대 평가된 유사도 가중치를 보정하여 고객 선호도 예측의 정확도를 높이기 위하여 기존의 연구에서 고려한 공통 평가 영화의 개수 보다 확대된 범위를 적용하였으며 각 예측 방법에 따라 서로 다른 개선 경향을 파악할 수 있었다.

CLASSIFICATION FUNCTIONS FOR EVALUATING THE PREDICTION PERFORMANCE IN COLLABORATIVE FILTERING RECOMMENDER SYSTEM

  • Lee, Seok-Jun;Lee, Hee-Choon;Chung, Young-Jun
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.439-450
    • /
    • 2010
  • In this paper, we propose a new idea to evaluate the prediction accuracy of user's preference generated by memory-based collaborative filtering algorithm before prediction process in the recommender system. Our analysis results show the possibility of a pre-evaluation before the prediction process of users' preference of item's transaction on the web. Classification functions proposed in this study generate a user's rating pattern under certain conditions. In this research, we test whether classification functions select users who have lower prediction or higher prediction performance under collaborative filtering recommendation approach. The statistical test results will be based on the differences of the prediction accuracy of each user group which are classified by classification functions using the generative probability of specific rating. The characteristics of rating patterns of classified users will also be presented.

근접 이웃 선정 협력적 필터링 추천시스템에서 이웃 선정 방법에 관한 연구 (A study on neighbor selection methods in k-NN collaborative filtering recommender system)

  • 이석준
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.809-818
    • /
    • 2009
  • 협력적 필터링 기법은 전자상거래에서 거래되는 아이템에 대하여 고객들이 평가한 선호 정보를 이용하여 특정 상품에 대한 선호도 예측 대상 고객의 선호도를 예측하는 기법이다. 협력적 필터링 기법을 통한 예측 정확도를 향상시키기 위해서는 예측에 이용할 수 있는 고객들의 선호 정보를 충분히 확보하여야 한다. 그러나 과도한 이웃 고객의 선호 정보는 오히려 예측 정확도에 부정적 영향을 미치며 또한 과소 정보 역시 예측 정확도 감소에 영향을 미칠 수 있다. 본 연구에서는 협력적 필터링 알고리즘 적용에 있어 k명의 근접 이웃을 결정하는 이웃 선정방법을 개선하였으며 개별 고객의 선호도 평가 정보를 이용하여 적정 이웃 수를 결정할 수 있는 방법을 제시한다. 본 연구의 결과는 근접 이웃 수 결정을 위한 기존 방법인 탐색적 방법을 개선함과 동시에 선호도 예측 정확도를 향상시키는데 유용한 방법을 제공할 수 있다.

  • PDF

추천시스템의 희소성이 예측 정확도에 미치는 영향에 관한 연구 (The Effect of Data Sparsity on Prediction Accuracy in Recommender System)

  • 김선옥;이석준
    • 인터넷정보학회논문지
    • /
    • 제8권6호
    • /
    • pp.95-102
    • /
    • 2007
  • 협력적 필터링을 이용한 추천시스템은 희소성의 문제로 인해 예측의 정확도에 대한 신뢰성에 문제가 있다. 이는 선호도 평가치의 희소성이 크면 이웃선정과정에 문제가 있을 뿐만 아니라 예측의 정확도를 떨어뜨린다. 본 논문에서는 사용자의 응답 희소성에 따른 MAE의 변화를 조사하였으며 희소성에 따라 집단을 분류하고 분류된 집단에 따른 MAE는 유의적인 차이가 있는 지를 분석하였다. 그리고 희소성 문제로 인한 집단 간의 예측 정확도를 높이기 위한 방법으로 희소성이 있는 아이템을 선별하여 이들 중에서 선호도 응답이 많은 사용자 고객의 선호도 평균값을 선호도 평가 치로 대치시켜 희소성을 완화하여 추천시스템의 예측 정확도가 높아졌음을 연구하였다.

  • PDF

베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템 (Preference Prediction System using Similarity Weight granted Bayesian estimated value and Associative User Clustering)

  • 정경용;최성용;임기욱;이정현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.316-325
    • /
    • 2003
  • 기존의 협력적 필터링 기술을 이용한 사용자 선호도 예측 방법에서는 피어슨 상관 계수에 의해 사용자의 유사도를 구하고, 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법을 사용하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하였다. 본 논문에서는 기존의 사용자 선호도 예측 방법의 문제점을 보완하기 위하여 베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서의 희박성 문제를 해결하기 위하여 Association Rule Hypergraph Partitioning 알고리즘을 사용하여 사용자를 장르별로 군집하며 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도를 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 기존의 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게 하여 예측의 정확도를 높일 수 있다. 제안된 방법의 성능을 평가하기 위해서 기존의 협력적 필터링 기술과 비교 평가하였다. 그 결과 기존의 협력적 필터링 기술의 문제점을 해결하여 예측의 정확도를 높이는데 효과적임을 확인하였다.