• Title/Summary/Keyword: 편대 제어

Search Result 36, Processing Time 0.024 seconds

편대비행 위성의 자세 동기화를 위한 SDRE 추적 제어기와 Hardware-In-the-Loop 시뮬레이션

  • Jeong, Jun-O;Park, Sang-Yeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.31.2-31.2
    • /
    • 2010
  • 편대비행 위성이 공동의 임무를 수행하기 위해서는 편대를 이루는 위성의 각기 다른 초기 오차와 다양한 외란 환경에서도 자세 동기화를 이룰 수 있는 기법이 필요하다. 이 연구에서는 편대비행위성의 자세 동기화를 위하여 비선형 시스템에 대한 준최적 제어기법인 SDRE(State-Dependent Riccati Equation)에 기반한 추적 제어기가 사용되었다. 반작용 휠이 포함된 위성의 자세 동역학이 SDRE 추적 제어기를 구성하는데 이용된다. 이를 Leader/Follower 편대비행 시스템에 적용하며, 기준 자세를 추적하는 Leader 위성의 자세를 Follower 위성이 추적하여 자세 동기화를 이룰 수 있다. MATLAB과 SIMULINK를 이용한 수치해석적 시뮬레이션으로 추적 제어기의 성능을 검증하였으며, 이에 대한 실시간 HIL(Hardware-In-the-Loop) 시뮬레이션이 수행되었다. 무중력 환경을 모사하는 에어베어링시스템과 세 개의 반작용 휠을 장착한 자세제어 HILS(Hardware-In-the-Loop Simulator)는 PC104 타입의 임베디드 컴퓨터에서 SIMULINK의 xPC Target을 이용한 실시간 시뮬레이션 환경을 제공하며, 이에 적용되는 SDRE 추적 제어기는 이산화되어 설계되었다. 또한 SDRE 추적 제어기에 대한 안정성을 보장하는 영역이 추정되어 위 추적 제어기가 위성 편대비행에 적합한 자세 동기화 기법임을 보였다.

  • PDF

Decentralized Formation Tracking Control of Multiple Homogeneous Agents (다 개체 동종 시스템의 분산 편대 추종 제어)

  • Kim, Sang-Hoon;Shim, Hyung-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1513-1514
    • /
    • 2008
  • 다 개체 동종 시스템의 분산 편대 추종 제어는 최근 몇 년간 많은 연구가 이루어져 왔다. 이러한 관심은 군사 분야, 모발 센서 네트워크, 지능형 교통 시스템과 같은 흥미롭고 새로운 응용 사례가 대두됨에 따라 집중되었다. 분산 편대 제어는 여러 가지 이론과 방법으로 연구되어 왔는데 대부분의 경우 여러 동종 시스템의 상호 연결성을 토대로 라플라스 인접 행렬의 성질로 설명하고 있다. 이러한 접근법은 합의 문제와 동기화 문제와도 관계가 있는데 이 경우 편대 제어의 경우와 유사한 방식으로 안정도를 설명하며 설계 고려 사항을 도출한다. 본 논문에서, 우리는 분산된 방법으로 여러 대의 동종 비선형 시스템을 다루며 이 시스템들은 시간에 대해 부드럽게 변하는 상대 기준 위치에 따라 편대를 이룰 수 있고 또한 전체 그룹은 모든 방향으로 자유롭게 움직이는 것이 가능하다. 우리의 주요 목표는 위와 같은 편대 추종 제어의 안정도를 해석하고 제어기를 설계하는 것이다.

  • PDF

위성 편대비행을 위한 궤도와 자세 통합 시뮬레이터 시스템 개발

  • Park, Han-Eol;Park, Sang-Yeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.26.1-26.1
    • /
    • 2011
  • 위성 편대비행 시스템에서 궤도 및 자세의 결정과 제어를 동시에 시뮬레이션 할 수 있는 통합 시스템을 설계하고 개발하였다. 실제 위성에서는 궤도 제어가 수행되는 동안 자세는 계속 변한다. 그러므로 임무수행을 위해 편대위성들의 자세를 동기화하기 위해서는 편대위성들의 자세 결정과 제어가 필요하다. 이와 같이 실제와 같은 시뮬레이션을 위해서, 궤도 및 자세의 결정과 제어를 동시에 수행할 수 있는 통합된 시뮬레이터 시스템이 필요하다. 통합 시뮬레이터 시스템의 개발은 기존에 연세대학교에서 개발한 GPS 시뮬레이터를 이용한 편대비행 테스트베드와 하드웨어 자세 시뮬레이터를 각각 보완한 후 통합하는 방법으로 수행하였다. 이 두 시스템은 서로 독립적으로 개발되었기 때문에 통합을 위하여 하드웨어 인터페이스와 소프트웨어 인터페이스 부분으로 나누어 설계와 개발을 수행하고, 최종적으로 결합하는 절차로 통합을 완료하였다. 마지막으로 개발된 통합 시뮬레이터 시스템과 통합 시나리오를 사용하여 궤도와 자세를 동시에 시뮬레이션 하고, 이를 통해 개발된 통합 시스템을 검증하였다. 이 연구를 통해 개발된 궤도와 자세가 통합된 하드웨어 시뮬레이터 시스템은 실제 위성에 가까운 시뮬레이션을 수행할 수 있을 뿐만 아니라 하드웨어와 소프트웨어 인터페이스에 대한 검증이 가능하고 실제의 하드웨어 특성으로부터 생기는 에러를 고려하여 알고리즘의 실제 성능을 평가할 수 있다.

  • PDF

Autonomous Formation Flight Tests of Multiple UAVs (다수 무인항공기의 자동 편대비행 시험)

  • Song, Yong-Kyu;Heo, Chang-Hwan;Lee, Sang-Jun;Kim, Jung-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.264-273
    • /
    • 2010
  • In this work, autonomous formation flight tests of multiple UAVs are experimentally studied. After a guidance and control system for a UAV is designed and tested, PID formation controller for follower UAV is tested using longitudinal and lateral distance feedback. It is shown that more stable and efficient formation guidance system is obtained by using position and attitude of the leader aircraft, which is exploited to calculate virtual waypoint for follower. In order to improve transient response during turn, part of roll command of the leader is added to the guidance command. Finally, autonomous formation flight test results of 3 UAVs are shown by using the best guidance algorithm suggested.

A Preliminary Development of Real-Time Hardware-in-the-Loop Simulation Testbed for the Satellite Formation Flying Navigation and Orbit Control (편대비행위성의 항법 및 궤도제어를 위한 실시간 Hardware-In-the-Loop 시뮬레이션 테스트베드 초기 설계)

  • Park, Jae-Ik;Park, Han-Earl;Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.99-110
    • /
    • 2009
  • The main purpose of the current research is to developments a real-time Hardware In-the-Loop (HIL) simulation testbed for the satellite formation flying navigation and orbit control. The HIL simulation testbed is integrated for demonstrations and evaluations of navigation and orbit control algorithms. The HIL simulation testbed is composed of Environment computer, GPS simulator, Flight computer and Visualization computer system. GPS measurements are generated by a SPIRENT GSS6560 multi-channel RF simulator to produce pseudorange, carrier phase measurements. The measurement date are transferred to Satrec Intiative space borne GPS receiver and exchanged by the flight computer system and subsequently processed in a navigation filter to generate relative or absolute state estimates. These results are fed into control algorithm to generate orbit controls required to maintain the formation. These maneuvers are informed to environment computer system to build a close simulation loop. In this paper, the overall design of the HIL simulation testbed for the satellite formation flying navigation and control is presented. Each component of the testbed is then described. Finally, a LEO formation navigation and control simulation is demonstrated by using virtual scenario.

Simulation Study on Formation Flight of Tiltrotor UAVs (틸트로터 무인기 편대비행 시뮬레이션 연구)

  • Park, Bum-Jin;Kang, Young-Shin;Cho, Am;Yoo, Chang-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.1012-1020
    • /
    • 2018
  • In order to improve the capability of mission flight of tiltrotor UAV that has been developed by Korea Aerospace Research Institute, a simulation study on the formation flight of autonomous control 5 level has been performed. The formation flight is based on the centralized method with leader and follower airplanes. The formation flight controller was verified through numerical simulation with 3 followers and hardware-in-the loop simulation with 1 follower. This paper describes controller design methods, hardware-in-the-looped simulation test, and performance verification using simulation.

A Study on Multiple Spacecraft Formation-keeping Control (다위성체의 편대비행 형상유지 제어에 관한 연구)

  • No, Tae-Soo;Lee, Jae-Gyu;Jung, Ok-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.51-59
    • /
    • 2005
  • In this paper, results of a multiple spacecraft formation-keeping control using the orbital relative motion and optimization technique are presented. To analyze and predict the relative motion between the formation-flying satellites, a closed-form orbit propagator obtained using the method of ephemeris compression is used. This closed-form orbit propagator is combined with optimization technique to plan a series of impulsive maneuvers, which maintain the formation configuration within the specified limit. As an example, this method is applied to the problem of maintaining the projected circular formation geometry and results from nonlinear simulation are presented.

Statistical Analysis of Receding Horizon Particle Swarm Optimization for Multi-Robot Formation Control (다개체 로봇 편대 제어를 위한 이동 구간 입자 군집 최적화 알고리즘의 통계적 성능 분석)

  • Lee, Seung-Mok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.115-120
    • /
    • 2019
  • In this paper, we present the results of the performance statistical analysis of the multi-robot formation control based on receding horizon particle swarm optimization (RHPSO). The formation control problem of multi-robot system can be defined as a constrained nonlinear optimization problem when considering collision avoidance between robots. In general, the constrained nonlinear optimization problem has a problem that it takes a long time to find the optimal solution. The RHPSO algorithm was proposed to quickly find a suboptimal solution to the optimization problem of multi-robot formation control. The computational complexity of the RHPSO increases as the number of candidate solutions and generations increases. Therefore, it is important to find a suboptimal solution that can be used for real-time control with minimal candidate solutions and generations. In this paper, we compared the formation error according to the number of candidate solutions and the number of generations. Through numerical simulations under various conditions, the results are analyzed statistically and the minimum number of candidate solutions and the minimum number of generations of the RHPSO algorithm are derived within the allowable control error.

Leaderless Formation Control Strategy and Stability Analysis for Multiple UAVs (리더가 없는 방식의 다수 무인기 편대비행 제어와 안정성 해석)

  • Seo, Joong-Bo;Ahn, Chae-Ick;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.988-995
    • /
    • 2008
  • A consensus-based feedback linearization method is proposed to maintain a specified time-varying geometric configuration for formation flying of multiple autonomous vehicles. In this approach, there exists no explicit leader in the team, and the proposed control strategy requires only the local neighbor-to-neighbor information between vehicles. The information flow topology between the vehicles is defined by Graph Laplacian matrix, and the formation flying can be achieved by the proposed feedback linearization with consensus algorithm. The stability analysis of the proposed controller is also performed via eigenvalue analysis for the closed-looop system. Numerical simulation is performed for rotary-wing type micro aerial vehicles to validate the performance of the proposed controller.