• Title/Summary/Keyword: 펜톤 반응

Search Result 69, Processing Time 0.031 seconds

Comparison of the Sonodegradation of Naphthalene and Phenol by the Change of Frequencies and Addition of Oxidants or Catalysts (주파수 변화 및 보조제 첨가에 따른 나프탈렌 및 페놀의 초음파 분해효율 비교)

  • Park, Jong-Sung;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.706-713
    • /
    • 2010
  • The research seeks to find the optimal conditions for sonodegradation of naphthalene and phenol as exemplary organic pollutants to be subjected to ultrasound in varying frequencies (28 kHz, 580 kHz, and 1,000 kHz) and in the presence of different kinds of additive (T$TiO_2$, $H_2O_2$, $FeSO_4$, Zeolite, and Cu). In cases of both naphthalene and phenol, 580 kHz of ultrasound has proven to be the most effective among others at sonodegradation. Based on the observation that OH radicals are also produced in maximum under exposure of 580 kHz of ultrasound, we concluded that this frequency of ultrasound creates hospitable condition for the combined process of degradation by pyrolysis and oxidization. $FeSO_4's$ degradation rate and k1 value have increased by approximately 1.8 times compared with the results of the solutions without any additives. This seems to be the result of ultrasound reaction which, accompanied by Fenton's reaction, increased the oxidative degradation and the production of OH radicals. However, application of ultrasound and Fenton's reaction is limited to the batch type conditions, as its use in continuous system can cause loss of iron or decay of the cistern, thereby creating additional pollutants. When the additive is replaced with $TiO_2$, on the contrary, the rate of sonodegradation has increased up to 20% compared to when there was no additive. We therefore conclude that $TiO_2$ could prove to be an effective additive for ultrasound degradation in continuous treatment system.

Influence of Acetate on the Removal of Phenanthrene from Contaminated Soil using Fenton Reaction (Fenton Reaction을 이용한 Phenanthrene 오염 토양 처리에서 Acetate의 영향)

  • Seong, Jo-Seph;Park, Joo-Yang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.352-357
    • /
    • 2009
  • Due to rapid consumption of hydrogen peroxide, large amount of hydrogen peroxide is required when Fenton reaction is applied to the contaminated soil. In this study, acetate was employed as a ligand of $Fe^{2+}$ to enhance the efficiency of removal of phenanthrene by securing the stability of hydrogen peroxide. 0.5 ${\sim}$ 3 times of acetate (2${\sim}$12mM) was added to compare with molar concentration of $Fe^{2+}$. Low initial concentration of hydrogen peroxide was 0.7% to eliminate side effect of removal efficiency. The results showed that hydrogen peroxide lifetime was lasted up to 72 hours, or more than 50 times of normal lifetime. Phenanthrene removal efficiency was improved up to 70% due to stabilized hydrogen peroxide. Ferrous ion was oxidized to ferric ion and oxidation-reduction was repeated during the reaction. Finally ferric ion was reduced to ferrous by $HO_2$. It was confirmed that, due to the influence of hydrogen peroxide, pH was acid region and it remained at the range of 4 ${\sim}$ 5 when 8 mM or more of acetate was added. Acetate which was used as the ligand of Fe was also decomposed by Fenton reaction. The decomposition time of acetate was slower than phenanthrene. Therefore, it was able to come to the conclusion that phenanthrene was superior to acetate at the competition for decomposition. Through the results of this study, it was able to identify the possibilities to improve the efficiency of Fenton reaction in the contaminated soil and its economic feasibility, and to move to more realistic technique through research expanded to neutral pH region.

An Electro-Fenton System Using Magnetite Coated One-body Catalyst as an Electrode (일체형 산화철 촉매를 전극으로 하는 전기펜톤산화법)

  • Choe, Yun Jeong;Ju, Jeh Beck;Kim, Sang Hoon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.117-121
    • /
    • 2018
  • A stainless steel mesh was applied to the cathode of an electro-Fenton system. Methylene blue (MB) solution was chosen as the model waste water with non-biodegradable pollutants. For the model waste water, the degradation efficiency was compared among various SUS mesh cathodes with different surface treatments and magnetite coatings on them. With increasing amount of the magnetite coating on SUS mesh, the degradation efficiency also increased. The improved electro-catalytic characteristic was explained by the increased amount of in situ generated hydrogen peroxide near the cathode surface. Cyclic voltammetry data also showed improved electro-catalytic performance for SUS mesh with more magnetite coatings on them.

A Study on the Treatment of Petroleum-Contaminated Soils Using Hydrogen Peroxide (석유로 오염된 토양의 과수를 이용한 처리에 관한 연구)

  • 최진호;김재호;공성호
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.49-57
    • /
    • 1997
  • Naturally-occurring iron minerals, goethite and magnetite, were used to catalyze hydrogen peroxide and initiate Fenton-like oxidation of silica sand contaminated with diesel, kerosene in batch systems. Reaction conditions were investigated by varying H$_2$0$_2$concentration(0%, 1%, 15%), initial contaminant concentration(0.2, 0.5, 1.0g diesel and kerosene/kg soil), and iron minerals(1, 5wt% magnetite or goethite). Contaminant degradations in silica sand-iron mineral-$H_2O$$_2$ systems were identified by determining total petroleum hydrocarbon(TPH) concentration. In case of silica sand contaminated with diesel(1g contaminan/kg soil with 5wt% magnetite) addition of 0%, 1%, 15% of $H_2O$$_2$showed 0%, 25%, and 60% of TPH reduction in 8 days, respectively When the mineral contents were varied from 1 to 5wt%, removal of contaminants increased by 16% for magnetite and 13.1% for goethite. The results from system contaminated by kerosene were similar to those of the diesel. Reaction of magnetite system was more aggressive than that of goethite system due to dissolution of iron and presence of iron(II) and iron(III); however, dissolved iron precipitated on the surface of iron mineral and seemed to cause reducing electron transfer activity on the surface and quenching $H_2$$O_2$. The system used goethite has better treatment efficiency due to less $H_2$$O_2$ consumption. Results of this study showed possible application of catalyzed $H_2$$O_2$ system to petroleum contaminated site without addition of iron source since natural soils generally contain iron minerals such as magnetite and goethite.

  • PDF

Fabrication of Fe-ACF/TiO2 composites and their photonic activity for organic dye (ACF/TiO2 복합체의 제조 및 유기 염료에 의한 광활성)

  • Zhang, Kan;Meng, Ze-Da;Ko, Weon-Bae;Oh, Won-Chun
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.254-262
    • /
    • 2009
  • Activated carbon fiber treated with iron compound (Fe-ACF) was employed for preparation of Feactivated carbon fiber/$TiO_2$ (Fe-ACF/$TiO_2$) composite catalysts. Then, the prepared Fe-ACF/$TiO_2$ composite catalysts were characterized by employing BET, SEM, XRD and EDX instruments. It showed that BET surface area was related to adsorption capacity for each composite. The SEM results showed that ferric compound and titanium dioxide were distributed on the surfaces of ACF. The XRD results showed that Fe-ACF/$TiO_2$ composite mostly contained an anatase structure with a Fe mediated compound. EDX results showed the presence of C, O, and Ti with Fe peaks in Fe-ACF/$TiO_2$ composites. From photocataytic degradation effect, it was observed in the organic dye (Methylene blue, MB) degradation by these composites. Different degradation effect can be attributed to the synergetic effects of photo-Fenton reaction of Fe. It was considered that the combined reactions of Fe-ACF/$TiO_2$ produce powerful photo-Fenton process in the MB degradation.

Decolorization of Rhodamine B by Electro Fenton-like Reaction (전기 펜톤-유사 반응을 이용한 Rhodamine B의 색 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • The electro-chemical decolorization of Rhodamine B (RhB) in water has been carried out by electro Fenton-like process. The effect of distance, material and shape of electrode, NaCl concentration, current, electric power, $H_2O_2$ and pH have been studied. The results obtained that decrease of RhB concentration of Fe(+)-Fe(-) electrode system was higher than that of other electrode system. The decrease of RhB concentration was not affected electrode distance and shape. Decolorization of electro Fenton-like reaction, which was added $H_2O_2$ onto the electrolysis using electrode was higher than electrolysis. Addition of NaCl decreased the electric consumption. The lower pH is, the faster initial reaction rate and reaction termination time observed.

Immobilization of Arsenic in Tailing by Fenton-like reaction (펜톤유사반응을 이용한 광미중에 비소의 불용화)

  • 정익재;최용수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.127-130
    • /
    • 2002
  • Recently, the contamination with heavy metals in closed mines has been seriously considered since it can disturb human health through the polluted drinking-water and crops. Therefore, the concerns about the remediation of polluted land and treatment technology for hazardous matters have been accelerated. However, any of practical methods for treatment and/or remediation have not been yet suggested. In this research, a novel technology was studied to immobilize arsenic in tailings and soils disturbed by mining. In this technology, Fenton-like reaction were applied to immobilize arsenic in tailings. In the examination of Fenton-like reaction using pure pyrite, $H_2O$$_2$ and arsenic, the concentrations of extracted arsenic and iron were reduced up to 90 and 75%, respectively From the result of SEM-EDS, the Immobilization of arsenic was observed on the surface of pyrite. Thus, it can be said that the coating and/or adsorption prevents the extraction of arsenic.

  • PDF

Reduction of Carbon Tetrachloride at Different pHs in Pyrolusite Catalyzed Fenton-like reduction (Pyrolusite으로 촉매화된 펜톤유사반응에서 pH변화에 따른 사염화탄소(CT)의 환원분해)

  • 김상민;공성호;김용수;허정욱
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.231-234
    • /
    • 2002
  • According to recent investigations regarding Fenton-like reaction, it was reported that there was a key factor to decompose organic materials by not only the hydoroxyl radical but also several reductants which were superoxide anion and hydroperoxide anion. This research was focused on an investigation of the decomposition of carbon tetrachloride(CT) by reductants which were generated by pyrolusite with hydrogen peroxide. Generally, CT decomposition rate increased with raising pH values. Especially,, CT was decomposed over 60 percent by 10,000 ppm of hydrogen peroxide within 10 minutes in neutral condition. In addition, the decomposition of chlorinated compounds would be accelerated in alkaline condition, even with low concentration of hydrogen peroxide.

  • PDF

유류오염 토양의 화학.생물학적 통합처리 과정 중의 미생물 군집 변화

  • Choi Jeong-Hye;Bae Jae-Sang;Park Yeon-Jeong;Kim Su-Gon;Go Seong-Cheol
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.29-32
    • /
    • 2006
  • 화학적 산화처리와 bioremedation 기법을 개별적 또는 복합적으로 동시에 적용함으로써 한 개별 기법의 단점을 보완하고 현장적용성을 증대시킬 수 있는 통합기법을 개발하고자 하였다. 펜톤유사 반응을 통해 고농도의 유류를 산화분해 시킨 후 미생물 처리를 통해 잔류 유류 오염물질을 제거하고자 하였다. 유류 오염토양의 화학 생물학적 통합처리 공정의 현장 적용성 및 토양 미생물에 미치는 영향을 검증하기 위해 처리과정 전 후의 미생물 군집구조를 분석하였다. 또한 토양 내 유류 분해균을 분리하기 위해 탄소원으로 경유와 벙커C를 이용하여 농화배양을 수행하였다. 경유 분해균 10여종, 벙커 C 분해균 6종을 분리하여 분해능 및 동정을 시도하였다. 또한 유류 분해미생물의 consortia를 분자생물학적 기법으로 분석을 시도하였다.

  • PDF

펜톤유사산화반응을 이용한 4-Chlorophenol 분해과정 예측

  • Lee, Ung;Lee, Seong-Jae;Park, Gyu-Hong;Bae, Beom-Han
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.145-148
    • /
    • 2003
  • The batch experiments showed that 0.515mM 4-chlorophenol and its oxidation intermediates could be totally decomposed within 60 minutes by 1g/L steelers' dust and 0.485mM hydrogen peroxide at pH 2.7. The rate constants in the simplified kinetic model proposed in this study were estimated by fitting to the experimental data obtained in $H_2O$$_2$/steelers' dust system. Using the estimated kinetic rate constants, the simulation of 4-chlorophenol, ferrous iron, hydrogen peroxide, and hydroxyl radical concentration was performed. The predicted concentrations of 4-chlorophenol and hydrogen peroxide corresponded to the actual concentrations.

  • PDF