• Title/Summary/Keyword: 퍼지추출기법

Search Result 185, Processing Time 0.021 seconds

Minimized Stock Forecasting Features Selection by Automatic Feature Extraction Method (자동 특징 추출기법에 의한 최소의 주식예측 특징선택)

  • Lee, Sang-Hong;Lim, Joon-S.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.206-211
    • /
    • 2009
  • This paper presents a methodology to 1-day-forecast stock index using the automatic feature extraction method based on the neural network with weighted fuzzy membership functions (NEWFM). The distributed non-overlap area measurement method selects the minimized number of input features by automatically removing the worst input features one by one. CPP$_{n,m}$(Current Price Position of the day n: a percentage of the difference between the price of the day n and the moving average from the day n-1 to the day n-m) and the 2 wavelet transformed coefficients from the recent 32 days of CPP$_{n,m}$ are selected as minimized features using bounded sum of weighted fuzzy membership functions (BSWFMs). For the data sets, from 1989 to 1998, the proposed method shows that the forecast rate is 60.93%.

A Study on Fuzzy Logic based Clustering Method for Radar Data Analysis (레이더 데이터 분석을 위한 Fuzzy Logic 기반 클러스터링 기법에 관한 연구)

  • Lee, Hansoo;Kim, Eun Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.217-222
    • /
    • 2015
  • Clustering is one of important data mining techniques known as exploratory data analysis and is being applied in various engineering and scientific fields such as pattern recognition, remote sensing, and so on. The method organizes data by abstracting underlying structure either as a grouping of individuals or as a hierarchy of groups. Weather radar observes atmospheric objects by utilizing reflected signals and stores observed data in corresponding coordinate. To analyze the radar data, it is needed to be separately organized precipitation and non-precipitation echo based on similarities. Thus, this paper studies to apply clustering method to radar data. In addition, in order to solve the problem when precipitation echo locates close to non-precipitation echo, fuzzy logic based clustering method which can consider both distance and other properties such as reflectivity and Doppler velocity is suggested in this paper. By using actual cases, the suggested clustering method derives better results than previous method in near-located precipitation and non-precipitation echo case.

Design of Optimized pRBFNNs-based Face Recognition Algorithm Using Two-dimensional Image and ASM Algorithm (최적 pRBFNNs 패턴분류기 기반 2차원 영상과 ASM 알고리즘을 이용한 얼굴인식 알고리즘 설계)

  • Oh, Sung-Kwun;Ma, Chang-Min;Yoo, Sung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.749-754
    • /
    • 2011
  • In this study, we propose the design of optimized pRBFNNs-based face recognition system using two-dimensional Image and ASM algorithm. usually the existing 2 dimensional face recognition methods have the effects of the scale change of the image, position variation or the backgrounds of an image. In this paper, the face region information obtained from the detected face region is used for the compensation of these defects. In this paper, we use a CCD camera to obtain a picture frame directly. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. AdaBoost algorithm is used for the detection of face image between face and non-face image area. We can butt up personal profile by extracting the both face contour and shape using ASM(Active Shape Model) and then reduce dimension of image data using PCA. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of RBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to real-time face image database and then demonstrated from viewpoint of the output performance and recognition rate.

Rule Generation and Approximate Inference Algorithms for Efficient Information Retrieval within a Fuzzy Knowledge Base (퍼지지식베이스에서의 효율적인 정보검색을 위한 규칙생성 및 근사추론 알고리듬 설계)

  • Kim Hyung-Soo
    • Journal of Digital Contents Society
    • /
    • v.2 no.2
    • /
    • pp.103-115
    • /
    • 2001
  • This paper proposes the two algorithms which generate a minimal decision rule and approximate inference operation, adapted the rough set and the factor space theory in fuzzy knowledge base. The generation of the minimal decision rule is executed by the data classification technique and reduct applying the correlation analysis and the Bayesian theorem related attribute factors. To retrieve the specific object, this paper proposes the approximate inference method defining the membership function and the combination operation of t-norm in the minimal knowledge base composed of decision rule. We compare the suggested algorithms with the other retrieval theories such as possibility theory, factor space theory, Max-Min, Max-product and Max-average composition operations through the simulation generating the object numbers and the attribute values randomly as the memory size grows. With the result of the comparison, we prove that the suggested algorithm technique is faster than the previous ones to retrieve the object in access time.

  • PDF

Iris Recognition using Gabor Wavelet and Fuzzy LDA Method (가버 웨이블릿과 퍼지 선형 판별분석 기법을 이용한 홍채 인식)

  • Go Hyoun-Joo;Kwon Mann-Jun;Chun Myung-Geun
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1147-1155
    • /
    • 2005
  • This paper deals with Iris recognition as one of biometric techniques which is applied to identify a person using his/her behavior or congenital characteristics. The Iris of a human eye has a texture that is unique and time invariant for each individual. First, we obtain the feature vector from the 2D Iris pattern having a property of size invariant and using the fuzzy LDA which is further through four types of 2D Gabor wavelet. At the recognition process, we compute the similarity measure based on the correlation values. Here, since we use four different matching values obtained from four different directional Gabor wavelet and select the maximum value, it is possible to minimize the recognition error rate. To show the usefulness of the proposed algorithm, we applied it to a biometric database consisting of 300 Iris Patterns extracted from 50 subjects and finally got more higher than $90\%$ recognition rate.

Fault Diagnosis of Induction Motor Using Clustering and Principal Component Analysis (클러스터링과 주성분 분석기법을 이용한 유도전동기 고장진단)

  • Park Chan-Won;Lee Dae-Jong;Park Sung-Moo;Chun Myung-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.208-211
    • /
    • 2006
  • 본 논문에서는 3상 유도전동기의 고장진단을 수행하기 위해 패턴인식에 기반을 둔 진단 알고리즘을 제안한다. 실험 장치는 유도전동기 구동의 고장신호를 얻기 위하여 구축하였으며, 취득된 데이터를 이용하여 진단 알고리즘을 구축하였다. 취득된 데이터 중에서 진단을 위해 사용될 훈련데이터는 퍼지 기반 클러스터링 기법을 이용하여 신뢰성 높은 데이터를 선택하여 고장별 신호를 추출하였다. 진단 알고리즘으로는 데이터를 주성분 분석기법을 적용하였으며, 최종 분류를 위해 Euclidean 기반 거리척도 기법을 이용하였다. 다양한 부하 및 고장신호에 대하여 제안된 방법을 적용하여 타당성을 검증하였다.

  • PDF

A Image Contrast Enhancement Technique Using Clustering Algorithm (클러스터링 알고리듬을 이용한 영상 대비 향상 기법)

  • 김남진;김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.188-191
    • /
    • 2004
  • 야간에 비디오카메라로 촬영시 열악한 주위 환경과 영상 전송에 기인하여 다양한 잡음에 의하여 왜곡되거나 흐린 저대비(low contrast)영상을 가질 수 있다. 본 논문에서는 획득한 저대비 영상을 대비 향상시켜주는 기법을 제안한다. 동영상 압축표준인 MPEG-2는 인간의 시각 특성상 색차(chrominance)신호보다 밝기(luminance)신호에 더 민감하기 때문에 밝기신호와 색차 신호를 분리하여 압축한다. 밝기신호만을 추출한 후 K-means 알고리듬을 사용하여 교차점을 자동으로 선정하는 방법을 사용하는데, 이 최적의 교차점을 선정하는 과정은 획득한 영상을 물체와 배경으로 분리하는 두 개의 클래스 문제로 보고 K-means 알고리듬을 적용하였고 구한 교차점을 사용하여 영상을 양분하여 히스토그램 평활화 방법을 적용하였다 븐 논문에서는 퍼지성 지수(index of fuzziness)를 사용하여 향상의 정도를 측정하였다. 제안된 기법을 저대비 영상에 적용하였으며 그 결과를 히스토그램 평활화 기법의 결과와 비교하였다.

  • PDF

User Assistant Soft Computing Method for 3D Effect Optimization (입체효과 최적화를 위한 사용자 보조 소프트 컴퓨팅 기법)

  • 최우경;김종수;하상형;김성현;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.419-422
    • /
    • 2004
  • 본 논문에서는 신경망 학습을 위한 데이터 획득시 생길 수 있는 오차를 줄이기 위해 획득 데이터에 대한 전처리 과정을 퍼지로써 구현하는 알고리즘을 제안하였다 신경망은 주어진 정보를 이용하여 학습을 가능하게 함으로써 시스템의 특징을 추출하는데 매우 우수한 능력을 발휘하고 있다 그러나 이는 학습에 사용하는 데이터에 오차가 포함되지 않는다는 점을 전제로 하고 있다. 그런데 데이터 획득과정이 인간의 주관적 판단에 의해 수작업으로 이루어지는 경우 학습 데이터는 오차가 존재할 수 있다. 학습 데이터의 오차를 줄이기 위해 조기에 획득된 데이터를 분석하고 추가적인 후보 데이터를 선정하여 데이터 획득 과정에서 큰 영향을 미치는 물체의 거리와 크기를 모두 고려할 수 있도록 퍼지 모델로써 구현하고자 한다.

  • PDF

Implementation of Real Time Automatic Running System using Fuzzy Analytic Hierachy Process (퍼지AHP를 이용한 실시간 자율주행 시스템의 구현)

  • Jin, Hyeon-Su
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.328-332
    • /
    • 2007
  • 본연구에서는 센서의 융합을 통하여 환경을 인식하며, 주변환경에 대한 지식을 갱신, 학습할수 있는 방법론을 연구하며, 동적인 장애물의 감지및 움직임 예측에 기반한 지능적 회피 알고리즘과 AHP를 이용한 Navigation Strategy수정과 이동 로봇 스스로 최적의 결과를 낼수 있게 개선 시키는 알고리즘을 구현한다. 그와 더불어 AHP를 이용하여 Navigation Performance를 최대로 높일 수 있는 방향을로 진화시키는 알고리즘을 구현한다. 또한 부여된 임무수행을 위한 목표물 추적을 위한 비전 시스템에서의 대상체 추출및 인식 알고리즘을 개발하며 인간뇌의 환경인식 체계와 유사한 방식의 Map building기법을 연구한다.

  • PDF

Automatic Defect Inspection with Adaptive Binarization and Bresenham's Algorithm for Spectacle Lens Products (적응적 이진화 기법과 Bresenham's algorithm을 이용한 안경 렌즈 제품의 자동 흠집 검출)

  • Kim, Kwang Baek;Song, Dong Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1429-1434
    • /
    • 2017
  • In automatic defect detection problem for spectacle lenses, it is important to extract lens area accurately. Many existing detection methods fail to do it due to insufficient minute noise removal. In this paper, we propose an automatic defect detection method using Bresenham algorithm and adaptive binarization strategy. After usual average binarization, we apply Bresenham algorithm that has the power in extracting ellipse shape from image. Then, adaptive binarization strategy is applied to the critical minute noise removal inside the lens area. After noise removal, We can also compute the influence factor of the defect based on the fuzzy logic with two membership functions such as the size of the defect and the distance of the defect from the center of the lens. In experiment, our method successfully extracts defects in 10 out of 12 example images that include CHEMI, MID, HL, HM type lenses.