• 제목/요약/키워드: 퍼지추론모델

Search Result 172, Processing Time 0.03 seconds

Optimal Design of Fuzzy Relation-based Fuzzy Inference Systems with Information Granulation (정보 Granules에 의한 퍼지 관계 기반 퍼지 추론 시스템의 최적 설계)

  • 박건준;김현기;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.467-470
    • /
    • 2004
  • 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 일반적으로, 정보 granules는 근접성, 유사성 또는 기능성 등에 인하여 서로 결합되는 요소(특히, 수치 데이터)의 실체이다. 본 논문에서는 비선형 시스템의 퍼지모델을 위해 정보 granules에 의한 퍼지 관계 기반 퍼지 추론 시스템을 최적 설계한다. 제안된 퍼지 모델은 정보 데이터의 특성을 살리기 위해 HCtl 클러스터링 방법에 의한 중심값을 이용하여 모든 입력변수가 상호 관계한 전반부/후반부 구조 및 파라미터 동정을 시행한다. 두 가지 형태의 퍼지 추론 방법은 간략 추론과 선형추론에 의해 수행되고 삼각형 멤버쉽 함수를 사용한다. 구축된 정보 granule 기반 퍼지 모델은 유전자 알고리즘을 이용하여 전반부 파라미터를 최적으로 동정한다. 그리고 학습 및 테스트 데이터의 성능 결과의 상호균형을 얻기 위한 하중값을 가진 성능지수를 사용하여 근사화와 예측성능의 향상을 꾀하며, 기존 문헌과의 성능비교를 통해 제안된 퍼지 모델을 평가한다.

  • PDF

Optimal design of fuzzy inference systems based on genetic granulation (진화 Granule 기반 퍼지추론 시스템의 최적 설계)

  • 박건준;이동윤;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.269-272
    • /
    • 2004
  • 본 논문은 비선형 시스템의 퍼지모델을 위해 정보 granules 기반 퍼지 추론 시스템의 새로운 설계 및 이의 최적화를 제시한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 일반적으로, 정보 granules는 근접성, 유사성 또는 기능성 둥에 인하여 서로 결합되는 요소(특히, 수치 데이터)의 실체이다. 제안된 퍼지 모델은 정보 데이터의 특성을 살리기 위해 HCM 클러스터링 방법에 의해 전반부/후반부 구조 및 파라미터 동정을 시행한다. 두 가지 형태의 퍼지 추론 방법은 간략 추론과 선형추론에 의해 수행되며 삼각형 멤버쉽 함수를 사용한다. 구축된 정보 granule 기반 퍼지 모델은 유전자 알고리즘을 이용하여 전반부 파라미터를 최적으로 동정한다. 제안된 비선형 모델의 성능평가는 수치적인 예를 통해 비교 평가한다.

  • PDF

Modular Fuzzy Inference Systems for Nonlinear System Control (비선형 시스템 제어를 위한 모듈화 피지추론 시스템)

  • 권오신
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.395-399
    • /
    • 2001
  • This paper describes modular fuzzy inference systems(MFIS) with adaptive capability to extract fuzzy inference modules from observation data through the learning process. The proposed MFIS is based on the structural similarity to Tagaki-Sugeno fuzzy models and a modular neural architecture. The learning of MFIS is done by assigning new fuzzy inference modules and by updating the parameters of existing modules. The fuzzy inference modules consist of local model network and fuzzy gating network. The parameters of the MFIS are updated by the standard LMS algorithm. The performance of the MFIS is illustrated with adaptive control of a nonlinear dynamic system.

  • PDF

Optimization of fuzzy systems based on information granules (정보 Granules 기반 퍼지 시스템의 최적화)

  • Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2567-2569
    • /
    • 2003
  • 본 논문은 비선형 시스템의 퍼지모델을 위해 정보 Granules 기반 퍼지추론 시스템 모델의 최적화를 제시한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 제안된 규칙베이스 퍼지모델은 HCM 클러스터링 방법, 컴플렉스 알고리즘 및 퍼지추론 방법을 이용하여 시스템 구조와 파라미터 동정을 수행한다. 두 가지 형태의 퍼지모델 추론 방법은 간략추론, 선형추론에 의해 시행된다. 본 논문에서는 퍼지모델의 입력변수와 퍼지 입력 공간 분할 및 입출력 데이타의 중심값을 구해서 후반부 다항식함수에 의한 정보 Granules 기반 구조 동정과 파라미터 동정을 통해 비선형 시스템을 표현한다. 전반부 파라미터의 동정에는 HCM 클러스터링 방법과 컴플렉스 알고리즘을 사용하고, 후반부는 표준 HCM 클러스터링과 표준 최소자승법을 사용하여 동정한다. 그리고 학습 및 테스트 데이타의 성능견과의 상호균형을 얻기 위한 하중값을 가진 성능지수를 제시함으로써 근사화와 예측성능의 향상을 꾀한다. 제안된 비선형 모델의 성능평가를 통해 그 우수성을 보인다.

  • PDF

Optimization of fuzzy systems by means of GA (유전자 알고리즘을 이용한 퍼지 시스템의 최적화)

  • 박병준;박춘성;오성권;김현기
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.112-115
    • /
    • 1998
  • 본 논문은 퍼지 추론 시스템 모델의 최적화를 제시한다. 비선형적이고 복잡한 실시스템의 특성을 해석하는 방법으로써 시스템의 정적 혹은 동적 특성을 묘사하기 위해 퍼지 모델이 사용된다. 그러나 퍼지 시스템의 동정은 경험적 방법에 의해 규칙을 추출하기 때문에, 보다 논리적이고 체계적인 방법에 의한 추출 방법의 고찰이 필요하다. 제안된 규칙베이스 퍼지모델은 GA 및 퍼지규칙의 이론을 이용한 시스템 구조와 파라미터 동정을 시향한다. 두형태의 퍼지모델 방법은 간략추론 및 선형추론에 의해 시행된다. 본 논문에서는 퍼지 추론 시스템의 전반부 파라미터 동정을 통해 퍼지 입력공간을 정의함으로써 비선형 시스템을 표현한다. 전반부 파라미터의 동정세는 유전자 알고리즘을 사용하고, 후번부는 표준가우스 소거법을 사용하여 동정한다. 최적화는 유전자 알고리즘에 기초한 자동-동조 방법이며, 학습 및 데이터의 성능결과의 상호 균형을 얻기 위한 하중값을 가진 성능지수가 제시된다.

  • PDF

Optimization of Fuzzy Set-based Fuzzy Inference Systems (퍼지 집합 기반 퍼지 추론 시스템의 최적화)

  • 박건준;이동윤;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.463-466
    • /
    • 2004
  • 본 논문에서는 각 입력 변수에 대하여 퍼지 공간을 분할한 퍼지 집합 기반 퍼지 추론 시스템을 제안한다. 퍼지 모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 쥘 필요성이 요구된다. 정보 granules는 근접성, 유사성 또는 기능성 등의 기준에 의해 서로 결합된 물체(특히, 데이터 점)의 연결된 모임으로 간주된다. 정보 데이터의 특성을 살리기 위해 HCM 클러스터링 방법에 의한 중심71을 이용하여 각 입력 변수에 대한 퍼지 집합 기반 전반부/후반부 구조 및 파라미터를 동정한다. 퍼지 추론 방법은 간략 및 선형 퍼지 추론을 수행하며 삼각형 멤버쉽 함수를 사용한다. 구축된 퍼지 모델은 유전자 알고리즘을 이용하여 전반부 파라미터를 최적으로 동정하며, 학습 및 테스트 데이터의 성능 결과의 상호균형을 얻기 위한 하중값을 가진 성능지수를 사용하여 근사화와 예측성능의 향상을 꾀한다. 또한, 제안된 퍼지 모델은 수치적인 예를 통하여 성능을 평가한다.

  • PDF

Optimial Identification of Fuzzy-Neural Networks Structure (퍼지-뉴럴 네트워크 구조의 최적 동정)

  • 윤기찬;박춘성;안태천;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.99-102
    • /
    • 1998
  • 본 논문에서는 복잡하고 비선형적인 시스템의 최적 모델링을 우해서 지능형 퍼지-뉴럴네트워크의 최적 모델 구축을 위한 방법을 제안한다. 기본 모델은 퍼지 추론 시스템의 언어적인 규칙생성의 장점과 뉴럴 네트워크의 학습기능을 결합한 FNNs 모델을 사용한다. FNNs 모델의 퍼지 추론부는 간략추론이 사용되고, 학습은 요류 역전파 알고리즘을 사용하여 다른 모델들에 비해 학습속도가 빠르고 수렴능력이 우수하다. 그러나 기본 모델은 주어진 시스템에 대하여 퍼지 공간을 균등하게 분할하여 퍼지 소속을 정의한다. 이것은 비선형 시스템의 모델링에 있어어서 성능을 저하시켜 최적의 모델을 얻기가 어렵다. 논문에서는 주어진 데이터의 특성을 부여한 공간을 설정하기 위하여 클러스터링 알고리즘을 사용한다. 클러스터링 알고리즘은 주어진 시스템에 대하여 상호 연관성이 있는 데이터들끼리 특성을 나누어 몇 개의 클래스를 이룬다. 클러스터링 알고리즘을 사용하여 초기 FNNs 모델의 퍼지 공간을 나누고 소속함수를 정의한다. 또한, 최적화 기법중의 하나로 자연선택과 자연계의 유전자 메카니즘에 바탕을 둔 탐색 알고리즘인 유전자 알고리즘을 사용하여 주\ulcorner 진 모델에 대하여 최적화를 수행한다. 또한 본 연구에서는 학습 및 테스트 데이터의 성능 결과의 상호 균형을 얻기 위한 하중값을 가긴 성능지수가 제시된다.

  • PDF

A Formal Specification of Fuzzy Object Inference Model for Supporting Disjunctive Fuzzy Information (이접적 퍼지 정보를 지원하는 퍼지 객체 추론 모델의 정형화)

  • 양형정;양재동
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.184-197
    • /
    • 2001
  • In this paper, we provide the formal specification of a fuzzy object inference language and propose ICOT(Integrated C-Object Tool) as its implementation for knowledge-based programming with the disjunctive fuzzy information. The novelty of our model is that it seamlessly combines object inference and fuzzy reasoning into a unified framework without compromising a compatibility with extant databases, especially object-relational ones. In this model most of the object-oriented paradigm is successfully expressed in terms of relational constructs, tailoring fuzzy reasoning style to be well suited to the framework of the databases. It turns out to be useful in preserving its conceptual simplicity as well, since simple-to-use is one of important criteria in designing the databases. Additionally this model considerably enhanced the semantic expressiveness of data allowing disjunctive fuzzy information.

  • PDF

Investigations on the Fuzzy Implication in the context of the Genetic-Based Fuzzy Reasoning (유전자 알고리즘을 이용한 퍼지 추론에서의 퍼지 함축에 관한 연구)

  • 임영희;이혜성;박대희
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.13-27
    • /
    • 1995
  • 국내외 문헌을 조사해 볼때, 최적의 퍼지 함축을 선택하는 것이 퍼지 추론 및 퍼지 추론의 모든 응용 분야에서 근본적인 문제임을 알 수 있다. 그러나 많은 연구가들의 계속적인 연구에도 불구하고 개인적인 평가 기준과 사용되는 응용 모델에 따라 각기 다른 성능 평가가 이루어졌으므로 퍼지 함축의 선택 문제는 아직까지도 논란의 대상이 되고 있다. 최근 학습이론의 도입으로 퍼지 추론을 상당한 효과를 보았으나 퍼지 함축의 선택 문제와 관련된 연구는 전무하다. 따라서 본 논문에서는 유전자 알고리즘을 퍼지 추론에 적용했을 때의 퍼지 함축의 선택 문제를 고찰, 분석한다. 즉 유전자 알고리즘을 이용하여 퍼지 소속 함수를 조정함으로써 퍼지 추론 기관의 성능 향상뿐 아니라 폭 넓은 퍼지 함축의 선택이 가능하다.

  • PDF

Design of GA-based Fuzzy Polynomial Neural Networks Architecture (유전자 기반 퍼지다항식 뉴럴네트워크 구조의 설계)

  • 박병준;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.442-445
    • /
    • 2004
  • 본 논문은 유전자 기반 퍼지다항식 뉴럴네트워크(Genetic based fuzzy polynomial neural networks: gFPNN)를 제안한다. gFPNN 구조는 퍼지집합을 기반으로 설계되며, 유전자 알고리즘에 의해 구조 및 파라미터를 최적화한 구조이다. 퍼지집합을 기반으로 설계되어진 퍼지뉴럴네트워크는 간략추론 구조와 선형추론 구조로 설계된다. 본 논문에서는 간략추론 및 선형추론 구조를 통합 및 확장한 퍼지다항식 뉴럴네트워크를 설계한다. 이 구조는 연결가중치를 이용하여 회귀다항식을 네트워크 구조로 표현하며, 간략추론(Type 0), 선형추론(Type 1), 회귀다항식추론(Type 2)을 모두 포함한다. 또한 퍼지규칙 후반부의 다항식 차수를 각 규칙에 대해 다르게 선택할 수 있으며, 일률적인 형식의 구조를 벗어나 주어진 시스템의 특성에 따라 유연한 구조를 설계할 수 있도록 한다. 여기에 더하여, 네트워크 구조와 파라미터 동조에 유전자 알고리즘을 적용하며, 구조와 파라미터 동정에 대한 효율적인 방법을 논의한다. 제안된 모델의 평가를 위해 수치예제를 이용한다.

  • PDF