• Title/Summary/Keyword: 퍼지시스템

Search Result 3,523, Processing Time 0.026 seconds

Transformation of TSK fuzzy systems into fuzzy systems with singleton consequents and its applications (TSK 퍼지시스템을 결론부가 singleton인 퍼지시스템으로 표현하는 방법과 그 응용)

  • Chae, Yang-Beom;Lee, Won-Chang;Gang, Geun-Taek
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.1
    • /
    • pp.48-59
    • /
    • 2002
  • TSK(Takagi-Sugeno-Kang) fuzzy models with linear equations consequents, which represent complex nonlinear systems very well with a few rules, can be easily identified systematically by using input-output data. Many algorithms designing TSK fuzzy controllers based on TSK fuzzy models, which guarantees the stability of the closed system, have been suggested. On the contrary, singleton fuzzy models with singleton consequents can be easily understood and adjusted. In this paper, in order to utilize the merits of TSK fuzzy systems and singleton fuzzy systems, an algorithm transforming a TSK fuzzy model into a singleton fuzzy model having the same input-output relation is suggested. The suggested algorithm is applied to a fuzzy modelling example and a fuzzy controller design example.

Chaotic Time Series Prediction using Parallel-Structure Fuzzy Systems (병렬구조 퍼지스스템을 이용한 카오스 시계열 데이터 예측)

  • 공성곤
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.113-121
    • /
    • 2000
  • This paper presents a parallel-structure fuzzy system(PSFS) for prediction of time series data. The PSFS consists of a multiple number of fuzzy systems connected in parallel. Each component fuzzy system in the PSFS predicts the same future data independently based on its past time series data with different embedding dimension and time delay. The component fuzzy systems are characterized by multiple-input singleoutput( MIS0) Sugeno-type fuzzy rules modeled by clustering input-output product space data. The optimal embedding dimension for each component fuzzy system is chosen to have superior prediction performance for a given value of time delay. The PSFS determines the final prediction result by averaging the outputs of all the component fuzzy systems excluding the predicted data with the minimum and the maximum values in order to reduce error accumulation effect.

  • PDF

Design and Implementation of PCI-based Parallel Fuzzy Imference System (PCI 기반 병렬 퍼지추론 시스템의 설계 및 구현)

  • 이병권;김종혁;손기성;이상구
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.103-108
    • /
    • 2001
  • 본 논문은 대량의 퍼지 데이터를 고속으로 전송 및 추론하기 위한 PCI 기반 병렬 퍼지 시스템을 구현한다. 많은 퍼지 데이터의 고속전송을 위해 PCI 인터페이스를 사용하고, 병렬 퍼지 추론 시스템을 위한 병렬 퍼지 모듈들을 FPGA로 설계하여 PCI 타겟 코어로서 병렬로 동작하게 한다. 이러한 시스템을 VHDL을 사용하여 설계 및 구현하였다. 본 시스템은 고속의 퍼지추론을 요하는 시스템 또는 대규모의 퍼지 전문가 시스템 등에 활용될 수 있다.

  • PDF

A method of converting fuzzy system into 2 layered hierarchical fuzzy system (퍼지 시스템의 2계층 퍼지 시스템으로의 변환 방법)

  • Joo Moon-G.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.303-308
    • /
    • 2006
  • To solve the rule explosion problem in multi input fuzzy logic system, a method of converting a given fuzzy system to 2 layered hierarchical fuzzy system is presented where the collection of the THEN-parts of the fuzzy rules of given fuzzy system is considered as vectors of fuzzy rule. At the 1 st layer, linearly independent fuzzy rule vectors generated from the given fuzzy logic system are used and, at the 2nd layer, linear combinations of these independent fuzzy rule vectors are used for fuzzy logic units at each layer. The resultant 2 layered hierarchical fuzzy system has not only equivalent approximation capability, but less number of fuzzy rules compared with the conventional fuzzy logic system.

A Real-time High-speed Fuzzy Control System Using Integer Fuzzy Control Method (정수형 퍼지제어기법을 적용한 실시간 고속 퍼지제어시스템)

  • 손기성;김종혁;성은무;이상구
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.299-302
    • /
    • 2003
  • In fuzzy control systems having large volumes of fuzzy data. one of the important problems is the improvement of execution speed in the fuzzy inference and defuzzification stages. In this paper, to improve the speedup of fuzzy controllers, we use an integer line mapping algorithm to convert [0, 1] real values in the fuzzy membership functions to integer pixels. U sing this, we propose a real-time high-speed fuzzy control system and implement a fast fuzzy processor and control system using FPGAs.

  • PDF

Fuzzy Modeling and Control for Nonlinear System (비선형 시스템의 퍼지 모델링과 제어)

  • 이남수;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.145-148
    • /
    • 2000
  • 근래 퍼지 제어 시스템의 설계는 대부분 Takagi-Sugeno 퍼지 모델에 기반하여 행해지고 있다. 이러한 TS퍼지 모델은 각 규칙의 결론부에 선형 상태 방정식의 형태를 위하고 있는데 각각의 상태 방정식은 원 비선형 시스템으로부터 얻어지고 있다. 하지만 시스템이 복잡해지고 비선형성이 강하면 TS퍼지 모델을 얻는데도 어려움이 따른다. 이에 본 논문에서는 TS퍼지 모델을 얻기 위한 한가지 방법을 제안한다. 먼저 시스템을 선형항과 비선형항으로 나누어 비선형항을 선형화하여 퍼지 모델화 하는 일련의 과정에 한가지 법칙을 도입하게 된다. 이렇게 얻어진 퍼지 모델을 기반으로 한 제어에는 많은 연구가 있었으며 본 논문에서는 극배치 방법을 이용한다. 마지막으로 모의 실험을 통하여 제안된 방법의 효용성을 검증한다.

  • PDF

Design of FCM Based on Type-2 fuzzy set (Type-2 퍼지 셋 기반의 FCM 설계)

  • Kim, In-Jae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1847-1848
    • /
    • 2008
  • 본 논문에서는 Type-2 퍼지 논리 시스템을 설계하고, 불확실한 정보를 갖는 입력 데이터에 대하여 Type-1 퍼지 논리 시스템과 성능을 비교한다. Type-1 퍼지 논리 시스템은 외부 잡음에 민감한 단점을 가지고 있는 반면, Type-2 퍼지 논리 시스템은 불확실한 정보를 잘 표현 할 수 있다. 따라서 Type-2 퍼지 논리 시스템을 이용하여 이러한 단점을 극복 하고자 한다. 본 논문에서는 실험을 통하여 기존의 Type-1 퍼지 논리 시스템 보다 Type-2 퍼지 논리 시스템이 효율적 이라는 것을 보인다.

  • PDF

Design of Optimal Fuzzy Rule-base Systems with Genetic Algorithm (유전알고리즘을 이용한 최적퍼지 규칙베이스 시스템의 설계)

  • Kim, Jong-Ryul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.439-442
    • /
    • 2007
  • 본 논문은 퍼지 분류를 위한 퍼지 규칙베이스 시스템에 대한 최적화 해법으로서 유전 알고리즘에 대해 살펴본다. 즉 퍼지 규칙베이스를 이용하는 퍼지 분류 시스템을 최적화률 하는 유전 알고리즘을 제안한다. 본 논문에서 다루는 최적화는 추출되는 퍼지 규칙의 수와 퍼지 분류 시스템의 입력 패턴을 정확하게 분류하는 지에 대한 성능을 포괄적으로 수행하는 것을 의미한다. 마지막으로 본 논문에서 제안하는 유전 알고리즘을 이용하여 수치실험을 수행하고 그 결과를 통해 제안하는 알고리즘의 유효성과 효율성을 생성된 퍼지 규칙의 수와 퍼지 분류 시스템의 성능의 관점에서 논의한다.

  • PDF

Function Approximation Using Cao s Fuzzy System (Cao의 퍼지 시스템을 이용한 함수 근사)

  • 길준민;박대희;박주영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.111-116
    • /
    • 1995
  • 본 논문의 목적은 Cao의 퍼지 추론에 기초한 퍼지 시스템이 Universal Approximator임을 증명함으로써 Cao의 퍼지 시스템을 비선형 모델링 문제에 적용하기 위한 이론적 토대를 제공하는 것이다. 즉 우리는 Cao의 퍼지 논리 시스템을 특별한 형태로 수식화하고 수식화된 Cao의 퍼지는 논리 시스템이 임의의 비선형 함수를 충분히 정확하게 근사할 수 있다는 것을 보인다. 이와 같이 증명된 이론은 Cao의 퍼지 시스템이 실제의 공학적 문제에 어떻게 성공적으로 적용되었는지를 설명할 수 있다.

  • PDF

Design of Nonlinear Model by Means of Interval Type-2 Fuzzy Logic System (Interval Type-2 퍼지 논리 시스템 기반의 비선형 모델 설계)

  • Kim, In-Jae;O, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.317-320
    • /
    • 2008
  • 본 논문에서는 Type-1 퍼지 논리 시스템과 Type-2 퍼지 논리 시스템을 설계하고, 불확실한 정보를 갖는 입력 데이터에 대하여 각각의 성능을 비교한다. Type-1 퍼지 논리 시스템은 외부잡음에 민감한 단점을 가지고 있는 반면, Type-2 퍼지 논리 시스템은 불확실한 정보를 잘 표현할 수 있으며 효율적으로 취급한다. 따라서 Type-2 퍼지 논리 시스템을 이용하여 이러한 단점을 극복하고자 2가지의 모델을 설계한다. 첫 번째 모델은 규칙의 전 ${\cdot}$ 후반부가 불확실성을 표현 할 수 없는 Type-1 퍼지 집합으로 구성된 Type-1 퍼지 논리 시스템을 설계한다. 두 번째는 규칙 후반부만 Type-2 퍼지 집합으로 구성한 두가지의 Type-2 퍼지 논리 시스템을 설계한다. 여기서 규칙 전반부의 입력 공간 분할에는 Min-Max 방법의 균등분할을 사용하고, 규칙 후반부 멤버쉽 함수의 중심 결정에는 입자 군집 최적화(Particle Swarm Optimization) 알고리즘을 사용하여 동정한다. 또한 입력 데이터에 인위적으로 가하는 노이즈의 정도에 따른 각각 모델의 성능을 비교한다. 마지막으로 비선형 모델 평가에 주로 사용되는 가스로 시계열 데이터를 제안된 모델에 적용하고, 실험을 통하여 불확실한 정보를 다루기에 Type-1 퍼지 논리 시스템 보다 Type-2 퍼지 논리 시스템이 효율적이라는 것을 보인다.

  • PDF