• 제목/요약/키워드: 퍼지분할

검색결과 223건 처리시간 0.032초

광역 시계열 원격탐사자료 분석의 특성과 응용 (Characteristics and Application of Large-area Multi-temporal Remote Sensing Data)

  • 성정창
    • 대한원격탐사학회지
    • /
    • 제16권1호
    • /
    • pp.1-11
    • /
    • 2000
  • 시계열 자료의 분석은 분광대에 기초한 분석과는 달리 생태계의 동적특성 연구에 자주 이용되어왔다. 그러나 시계열 자료의 처리가 갖는 문제점과 대륙이나 전세계를 대상으로한 광역자료가 갖는 문제점에 대하여 해결방안을 제시한 연구는 미미하다. 이 연구에서는 광역 시계열 자료 분석의 특징들을 살펴본 후, 지역간 식생성장패턴의 차이와 검정자료 화보의 어려움을 지적하였다 이들 문제에 대한 해결방안으로 위도별 화상분할기법과 불변화소의 이용법을 제시하였다. 사례연구로 아시아지역의 일부를 대상으로 1982년에서 1993년까지의 AVHRR 자료를 이용하여 화상분류를 실시하였다. 불변화소들은 한 시점의 검정자료 정보를 다른 시점으로 확대 적용을 가능케하여, 다른 시점에 대해서도 충분한 양의 검정자료 정보를 확보할 수 있었으며, 위도별 화상분할을 통하여 지역간 식생성장패턴의 차이를 연구에 포함시킬 수 있었다. 퍼지화상분류를 통한 사례연구는 또한 인구밀집 지역에서의 삼림의 감소와 경작지의 증가 추세를 보여주었으며, 인구 희소지역에서의 반대패턴을 보여주었다.

(2D)2PCA 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템 설계 (Design of pRBFNNs Pattern Classifier-based Face Recognition System Using 2-Directional 2-Dimensional PCA Algorithm)

  • 오성권;진용탁
    • 전자공학회논문지
    • /
    • 제51권1호
    • /
    • pp.195-201
    • /
    • 2014
  • 본 연구에서는 $(2D)^2PCA$ 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템을 설계하였다. 기존의 1차원 PCA는 행과 열의 곱으로 표현한 이미지의 차원을 축소한다. 하지만 $(2D)^2PCA$(2-Directional 2-Dimensional Principal Components Analysis)는 이미지의 행과 열에서 각각 차원축소를 수행한다. 그 다음 제안된 지능형 패턴분류기로 축소된 이미지를 사용하여 성능을 평가한다. (pRBFNNs)로 성능 평가를 한다. 제안된 다항식 기반 RBFNNs은 조건부, 결론부, 추론부 세가지의 기능적 모듈로 구성되어 있고 조건는 퍼지 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 RBFNNs의 연결가중치로 일차 선형식으로 표현한다. 또한 차분진화 알고리즘을 이용하여 제안된 분류기의 파라미터, 즉 입력의 수, 퍼지 클러스터링의 퍼지화 계수를 최적화 한다. 얼굴인식에 많이 사용되는 Yale과 AT&T를 사용하여 인식률을 평가하였다. 실험 평가를 위해 IC&CI 연구실 데이터를 추가하여 실험하였다.

퍼지적분을 이용한 영상품질의 객관적이고 정량적 평가: 팬톰 연구 (Objective and Quantitative Evaluation of Image Quality Using Fuzzy Integral: Phantom Study)

  • 김성현;서태석;최보영;이형구
    • 한국의학물리학회지:의학물리
    • /
    • 제19권4호
    • /
    • pp.201-208
    • /
    • 2008
  • 물리적 평가(physical evaluation)가 영상품질의 객관화와 정량화를 위한 토대를 제공함에도 불구하고, 부정확하고 가변적인 특성을 지닌 주관적 평가(subjective evaluation)가 영상평가에 중요한 역할을 하게 된다. 본 연구에서는 디지털 방사선 영상의 물리적 평가와 주간적 평가의 단점을 상호 보완하고 객관적 정량화를 위한 새로운 방법을 제안하고자 한다. 임상에 사용되고 있는 4대의 디지털 방사선 영상 촬영장치로부터 동일한 임상조건에서 흉부 팬톰 영상을 획득하였다. 물리적 영상평가를 위하여 디지털 흉부 팬톰 내에서 3개의 영역(폐, 심장, 그리고 복부)에 존재하는 CNR (contrast-to-noise ratio)를 측정하였고 분할(segmentation)과 정합(registration)등 다양한 영상처리기술이 적용되었다. 주관적 평가는 5명의 관찰자에 의한 저 대조도 물체의 식별 정도를 점수화 하였다. 두 평가의 특성을 보완 및 결합하고자 퍼지적분 이론이 도입되었다. 4대의 시스템으로부터의 평가결과가 비교되었으며, 물리적 평가와 주관적 평가가 항상 비례하지 않음을 보였다. 물리적 평가에서는 높은 점수를 보였던 시스템이 주관적 평가에서는 상대적으로 낮은 평가를 보였다. 본 연구에서 제안한 퍼지적분에 의한 영상평가의 정량화는 물리적 평가와 주관적 평가를 모두 포함하는 총체적인 평가 방법이며, 다양한 영상품질 평가에 유용할 것이라 사료된다.

  • PDF

효과적인 워터마킹 기법을 사용한 화재 비디오 영상의 저작권 보호 (Copyright Protection for Fire Video Images using an Effective Watermarking Method)

  • ;김종면
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권8호
    • /
    • pp.579-588
    • /
    • 2013
  • 본 논문에서는 화재 비디오 영상의 저작권 보호를 위해 효과적인 워터마킹 기법을 제안한다. 제안하는 워터마킹 기법은 명암도 동시발생 행렬과 퍼지 클러스터링 알고리즘을 이용하여 화재의 색상과 텍스처의 특징을 효율적으로 이용한다. 명암도 동시발생 행렬은 각 후보 화재 영상의 블록에 대한 에너지와 동질성을 계산하여 텍스처 데이터 셋을 만드는데 사용하며, 퍼지 클러스터링은 화재 비디오 영상의 색상 분할과 워터마커 삽입을 위한 텍스처 블록을 결정하기 위해 사용된다. 선택된 텍스처 블록은 이산 웨이블릿 변환을 통해 네 가지 서브밴드 (LL, LH, HL, HH)를 가지는 1차 레벨 웨이블릿 구조로 분해되고, 워터마커는 사람의 시각에 영향을 주지 않는 LH 영역에 삽입된다. 모의실험결과, 제안한 워터마킹 기법은 약 48 데시벨의 높은 첨부 신호 대 잡음 비와 1.6-2.0의 낮은 M-특이치 분해 값을 보였다. 또한, 제안한 워터마킹 기법은 노이즈 첨가, 필터링, 크로핑, JPEG 압축과 같은 영상처리 공격에서도 기존 이미지 워터마킹 알고리즘보다 정규화된 상관 값에서 높은 성능을 보였다.

퍼지 클러스터링을 이용한 칼라 영상 분할 (A study on the color image segmentation using the fuzzy Clustering)

  • 이재덕;엄경배
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 춘계종합학술대회
    • /
    • pp.109-112
    • /
    • 1999
  • Image segmentation is the critical first step in image information extraction for computer vision systems. Clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are divided from the fuzzy c-means(FCM) algorithm. The FCM algorithm uses fie probabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belonging or compatibility. Moreover, the FCM algorithm has considerable trouble under noisy environments in the feature space. Recently, a possibilistic approach to clustering(PCM) for solving above problems was proposed. In this paper, we used the PCM for color image segmentation. This approach differs from existing fuzzy clustering methods for color image segmentation in that the resulting partition of the data can be interpreted as a possibilistic partition. So, the problems in the FCM can be solved by the PCM. But, the clustering results by the PCM are not smoothly bounded, and they often have holes. The region growing was used as a postprocessing after smoothing the noise points in the pixel seeds. In our experiments, we illustrate that the PCM us reasonable than the FCM in noisy environments.

  • PDF

3차원 균열의 응력확대계수에 대한 해석의 자동화 (Automation of Analysis for Stress Intensity Factor of 3-D Cracks)

  • 이준성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.496-500
    • /
    • 1997
  • This paper describes an automated system for analyzing the stress intensity factors(SIFs) of three-dimensional (3D) cracks. A geometry model, i.e.a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delauuay triangulation techniques. The singular elements such that the mid-point nodes near crack fornt are shifted at the quarter-points are automatically placed along the 3D crack front. THe complete finite element (FE) model generated, i.e the mesh with material properties and boundary conditions is given to one of the commercial FE codes, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performance of the present system, a semi- elliptical surface crack in a plate subjected to tension is solved.

  • PDF

개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증 (A Passport Recognition and face Verification Using Enhanced fuzzy ART Based RBF Network and PCA Algorithm)

  • 김광백
    • 지능정보연구
    • /
    • 제12권1호
    • /
    • pp.17-31
    • /
    • 2006
  • 본 논문에서는 출입국자 관리의 효율성과 체계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 여권 이미지가 기울어진 상태로 스캔되어 획득되어질 경우에는 개별 코드 인식과 얼굴 인증에 많은 영향을 미칠 수도 있으므로 기울기 보정은 문자 분할 및 인식, 얼굴 인증에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 영상에 대한 각도 보정을 수행한다. 여권 코드 추출은 소벨 연산자와 수평 스미어링, 8 방향 윤곽선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이진화 알고리즘을 적용하여 코드의 문자열 영역을 이진화한다. 이진화된 문자열 영역에 대해 CDM 마스크를 적용하여 문자열의 코드들을 복원하고 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드 인식은 개선된 RBF 네트워크를 제안하여 적용한다. 개선된 퍼지 ART 기반 RBF 네트워크는 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하는 퍼지 ART 알고리즘을 제안하여 RBF 네트워크의 중간층으로 적용한다. 얼굴 인증을 위해서는 얼굴 인증에 가장 보편적으로 사용되는 PCA 알고리즘을 적용한다. PCA 알고리즘은 고차원의 벡터를 저 차원의 벡터로 감량하여 전체 입력 영상들의 직교적인 공분산 행렬을 계산한 후, 그것의 고유 값에 따라 각 영상의 고유 벡터를 구한다. 따라서 본 논문에서는 PCA 알고리즘을 적용하여 얼굴의 고유 벡터를 구한 후, 특징 벡터를 추출한다. 그리고 여권 영상에서 획득되어진 얼굴 영상의 특징 벡터와 데이터베이스에 있는 얼굴 영상의 특징 벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에서 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

GMM과 클러스터링 기법에 의한 뉴로-퍼지 시스템 모델링 (A Neuro-Fuzzy System Modeling using Gaussian Mixture Model and Clustering Method)

  • 김승석;곽근창;유정웅;전명근
    • 한국지능시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.571-576
    • /
    • 2002
  • 본 논문에서는 여러 분야에서 널리 응용되고 있는 적응 뉴로-퍼지 시스템(ANFIS)의 성능 개선에 있어서 전제부 파라미터를 효과적으로 초기화 시키는 방법을 제안한다. 기존의 그리드 분할을 이용한 입력공간 선택 방법은 ANFIS의 규칙 생성에 있어서 얻어진 규칙의 수가 지수적으로 증가하는 단점이 있다. 이에, 본 연구에서는 GMM에서의 최대우도추정을 이용한 EM 알고리즘을 통하여 초기치에 의하여 성능의 영향이 좌우되는 ANFIS의 입력으로 주어 제안된 클러스터링 기법에 의하여 모델의 성능을 개선하고자 한다. 제안된 방법의 클러스터링 방법은 통계적 방법에 근거하여 좋은 성능의 파라미터를 획득할 수 있어 주어진 모델에 대한 ANFIS의 성능을 개선할 수 있다. 이들 방법의 유용함을 전형적인 다변수 비선형 데이터인 자동차 연료 예측 문제와 정수장 응집제 주입 문제에 적용하여 제안된 방법이 이전의 연구보다 성능이 개선되는 것을 통하여 보였다.

모션 데이터의 계층적 가시화에 의한 3차원 아바타의 표정 제어 (Facial Expression Control of 3D Avatar by Hierarchical Visualization of Motion Data)

  • 김성호;정문렬
    • 정보처리학회논문지A
    • /
    • 제11A권4호
    • /
    • pp.277-284
    • /
    • 2004
  • 본 논문은 사용자로 하여금 계층적 가시화 기법에 의한 표정들의 공간으로부터 일련의 표정을 선택하게 함으로써 3차원 아바타의 표정 제어기법을 기술한다. 본 시스템에서는 2,40P0여개의 표정 프레임을 이용하여 2차원 표정공간을 구성하였으며, 3차원 아바타의 표정 제어는 사용자가 표정공간을 항해하면서 수행한다. 그러나 표정의 수가 너무 많아 사용자가 항해를 하는데 어려움이 많기 때문에 계층적 가시화 기법이 필요하다. 표정공간을 계층적으로 분할하기 위해, 퍼지 클러스터링을 이용한다. 초기 단계에서는 2,400여개의 표정들을 이용하여 약 11개의 클러스터센터를 가지도록 클러스터링한다. 클러스터 센터들은 2차원 평면에 표시되며 후보 키 프레임으로 사용된다 사용자는 후보 키 프레임들 중에서 특정 키 프레임들을 선택하여 초기 항해경로를 생성한다. 사용자가 줌 인(이산적인 단계를 가지고 있음)을 하면 상세한 단계를 보기를 원한다는 의미이므로 줌 인된 단계에 적합한 표정 클러스터들을 생성한다. 단계가 증가될 때 마다 클러스터의 수를 두 배로 하고, 클러스터의 수만큼 표정들을 클러스터링한다. 사용자는 현재 단계에서 그전 단계의 항해경로를 따라 새로운 키 프레임(클러스터 센터)들을 선택하여 항해경로를 갱신한다. 줌 인을 최대로 한 마지막 단계에서 항해경로를 갱신하면 표정 제어 설정이 끝난다. 사용자는 언제든지 줌 아웃을 통해 그 전단계로 돌아가서 항해경로를 수정할 수 있다. 본 논문은 본 시스템이 어떤 효과가 있는지를 알기 위해 사용자들로 하여금 본 시스템을 사용하여 3차원 아바타의 표정 제어를 수행하게 하였으며, 그 결과를 평가한다.

HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화 (Multi-FNN Identification by Means of HCM Clustering and ITs Optimization Using Genetic Algorithms)

  • 오성권;박호성
    • 한국지능시스템학회논문지
    • /
    • 제10권5호
    • /
    • pp.487-496
    • /
    • 2000
  • 본 논문에서는, HCM 클러스러팅 방법과 유전자 알고리즘을 이용하여 다중 FNN 모델을 동정하고 최적화 한다. 제안된 다중 FNN은 Yamakawa의 FNN을 기본으로 하며, 퍼지 추론 방법으로 간략 추론을, 학습으로는 오류 역전파 알고리즘을 사용한다. 다중 FNN 모델의 구조와 파라미터를 동정하기 위해 HCM 클러스터링과 유전자 알고리즘을 사용한다. 여기서, 시스템 모델링을 위해 데이터 전처리 기능을 수행하는 HCM클러스터링 방법은 I/O 프로세서 공정 데이터를 이용하여 입출력 공간분할에 의한 다중 FNN 구조를 결정하기 위해 사용된다. 또한 유전자 알고리즘을 사용하여 멤버쉽함수의 정점, 학습율, 모멘텀 계수와 같은 다중 FNN 모델의 파라미터들을 동조한다. 모델의 근사화와 일반화 능력 사이에 합히적 균형을 얻기 위해 하중계수를 가진 합성 성능지수를 사용한다. 이 합성 성능지수는 근사화 및 예측 능력사이의 상호 균형과 의존성을 고려한 하중계수를 가진 합성 목적함수를 의미한다. 데이터 개수, 비선형성의 정도에 의존하는 이 합성 목적함수의 하중계수의 선택, 조절을 통하여 최적의 다중 FNN 모델을 설계하는 것이 유용하고 효과적임을 보인다. 제안된 모델의 성능 평가를 위하여 가스로 공정의 시계열 데이터와 비선형 함수의 수치 데이터를 사용한다.

  • PDF