Abstract
There have been a lot of considerations dealing with improving the performance of neuro-fuzzy system. The studies on the neuro-fuzzy modeling have largely been devoted to two approaches. First is to improve performance index of system. The other is to reduce the structure size. In spite of its satisfactory result, it should be noted that these are difficult to extend to high dimensional input or to increase the membership functions. We propose a novel neuro-fuzzy system based on the efficient clustering method for initializing the parameters of the premise part. It is a very useful method that maintains a few number of rules and improves the performance. It combine the various algorithms to improve the performance. The Expectation-Maximization algorithm of Gaussian mixture model is an efficient estimation method for unknown parameter estimation of mirture model. The obtained parameters are used for fuzzy clustering method. The proposed method satisfies these two requirements using the Gaussian mixture model and neuro-fuzzy modeling. Experimental results indicate that the proposed method is capable of giving reliable performance.
본 논문에서는 여러 분야에서 널리 응용되고 있는 적응 뉴로-퍼지 시스템(ANFIS)의 성능 개선에 있어서 전제부 파라미터를 효과적으로 초기화 시키는 방법을 제안한다. 기존의 그리드 분할을 이용한 입력공간 선택 방법은 ANFIS의 규칙 생성에 있어서 얻어진 규칙의 수가 지수적으로 증가하는 단점이 있다. 이에, 본 연구에서는 GMM에서의 최대우도추정을 이용한 EM 알고리즘을 통하여 초기치에 의하여 성능의 영향이 좌우되는 ANFIS의 입력으로 주어 제안된 클러스터링 기법에 의하여 모델의 성능을 개선하고자 한다. 제안된 방법의 클러스터링 방법은 통계적 방법에 근거하여 좋은 성능의 파라미터를 획득할 수 있어 주어진 모델에 대한 ANFIS의 성능을 개선할 수 있다. 이들 방법의 유용함을 전형적인 다변수 비선형 데이터인 자동차 연료 예측 문제와 정수장 응집제 주입 문제에 적용하여 제안된 방법이 이전의 연구보다 성능이 개선되는 것을 통하여 보였다.