• 제목/요약/키워드: 팬톰

Search Result 199, Processing Time 0.031 seconds

Evaluation of Corrected Dose with Inhomogeneous Tissue by using CT Image (CT 영상을 이용한 불균질 조직의 선량보정 평가)

  • Kim, Gha-Jung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • Purpose: In radiation therapy, precise calculation of dose toward malignant tumors or normal tissue would be a critical factor in determining whether the treatment would be successful. The Radiation Treatment Planning (RTP) system is one of most effective methods to make it effective to the correction of dose due to CT number through converting linear attenuation coefficient to density of the inhomogeneous tissue by means of CT based reconstruction. Materials and Methods: In this study, we carried out the measurement of CT number and calculation of mass density by using RTP system and the homemade inhomogeneous tissue Phantom and the values were obtained with reference to water. Moreover, we intended to investigate the effectiveness and accuracy for the correction of inhomogeneous tissue by the CT number through comparing the measured dose (nC) and calculated dose (Percentage Depth Dose, PDD) used CT image during radiation exposure with RTP. Results: The difference in mass density between the calculated tissue equivalent material and the true value was ranged from $0.005g/cm^3\;to\;0.069g/cm^3$. A relative error between PDD of RTP and calculated dose obtained by radiation therapy of machine ranged from -2.8 to +1.06%(effective range within 3%). Conclusion: In conclusion, we confirmed the effectiveness of correction for the inhomogeneous tissues through CT images. These results would be one of good information on the basic outline of Quality Assurance (QA) in RTP system.

  • PDF

Analysis of Dose Distribution on Critical Organs for Radiosurgery with CyberKnife Real-Time Tumor Tracking System (사이버나이프 실시간 종양추적 시스템을 이용한 방사선수술 시 주요 장기의 선량분포 분석)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Seong-Hoon;Ji, Young-Hoon;Kim, Kum-Bae;Lee, Sang-Hoon;Choi, Jin-Ho;Lee, Re-Na;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.14-20
    • /
    • 2009
  • We measured the dose distribution for spinal cord and tumor using Gafchromic film, applying 3D and 4D-Treatment Planning for lung tumor within the phantom. A measured dose distribution was compared with a calculated dose distribution generated from 3D radiation treatment planning and 4D radiation treatment planning system. The agreement of the dose distribution in tumor for 3D and 4D treatment planning was 90.6%, 97.64% using gamma index computed for a distance to agreement of 1 mm and a dose difference of 3%. However, a gamma agreement index of 3% dose difference tolerence of and 2 mm distance to agreement, the accordance of the dose distribution around cord for 3D and 4D radiation treatment planning was 57.13%, 90.4%. There are significant differences between a calculated dose and a measured dose for 3D radiation treatment planning, no significant differences for 4D treatment planning. The results provide the effectiveness of the 4D treatment planning as compared to 3D. We suggest that the 4-dimensional treatment planning should be considered in the case where such equipments as Cyberknife with the real time tracking system are used to treat the tumors in the moving organ.

  • PDF

Verification of X-sight Lung Tracking System in the CyberKnife (사이버나이프에서 폐종양 추적 시스템의 정확도 분석)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Seong-Hoon;Cho, Sam-Ju;Min, Chul-Ki;Cho, Kwang-Hwan;Lee, Sang-Hoon;Choi, Jin-Ho;Lim, Sang-Wook;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.174-179
    • /
    • 2009
  • To track moving tumor in real time, CyberKnife system imports a technique of the synchrony respiratory tracking system. The fiducial marker which are detectable in X-ray images were demand in CyberKnife Robotic radiosurgery system. It issued as reference markers to locate and track tumor location during patient alignment and treatment delivery. Fiducial marker implantation is an invasive surgical operation that carries a relatively high risk of pneumothorax. Most recently, it was developed a direct lung tumor registration method that does not require the use of fiducials. The purpose of this study is to measure the accuracy of target applying X-sight lung tracking using the Gafchromic film in dynamic moving thorax phantom. The X-sight Lung Tracking quality assurance motion phantom simulates simple respiratory motion of a lung tumor and provides Gafchromic dosimetry film-based test capability at locations inside the phantom corresponding to a typical lung tumor. The total average error for the X-sight Lung Tracking System with a moving target was $0.85{\pm}0.22$ mm. The results were considered reliable and applicable for lung tumor treatment in CyberKnife radiosurgery system. Clinically, breathing patterns of patients may vary during radiation therapy. Therefore, additional studies with a set real patient data are necessary to evaluate the target accuracy for the X-sight Lung Tracking system.

  • PDF

Analysis of Changes in Skin Dose During Weight Loss when Tomotherapyof Nasopharynx Cancer (비인두암 토모테라피 시 체중 감소에 따른 피부선량 변화 분석)

  • Jang, Joon-Young;Kim, Dae Hyun;Choi, Cheon Woong;Kim, Bo-Hui;Park, Cheol-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.99-104
    • /
    • 2016
  • For patients receiving chemotherapy and radiation therapy treatment progresses as vomiting, nausea, weight of the patient because of a loss of appetite it is reduced. The patient's weight and the distance from the skin and the treatment site is expected to be closer, thereby reducing the change in the skin because of this dose. This study tests using a loose see the difference between the volume change appears as the weight of the patient using the same phantom and the phantom body of the patient. To using the same as the position EBT film is attached to the skin of the treatment site and was adjusted to the thickness of the Bolus. And using a computerized treatment planning only tomotherapy equipment was passed under the conditions according to the thickness of the radiation dose. To baseline for accurate reproduction position using the MVCT was applied to treated with verification. By passing a total of three dose reduced the error, it was a measure of the film by using a dedicated scanner, EBT VIDAR scanner. Got an increase in the skin dose is displayed each time the thickness of the bolus reduced, in a bolus was completely removed with the highest value. If the changes appeared dose was greater weight loss patients to chemotherapy and therefore bolus thickness variation considering the weight loss of the patient when applying the tomotherapy of nasopharynx cancer was found that the increase in skin dose be increased. This large patient before treatment due to weight loss over the image verification is considered to be established should consider how to re-create your mask and treatment plan for fixing it.

Image Quality Improvement in Computed Tomography by Using Anisotropic 2-Dimensional Diffusion Based Filter (비등방성 2차원 확산 기반 필터를 이용한 전산화단층영상 품질 개선)

  • Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • The purpose of this study was tried to remove the noise and improve the spatial resolution in the computed tomography (CT) by using anisotropic 2-dimensional (2D) diffusion based filter. We used 4-channel multi-detector CT and american association of physicists in medicine (AAPM) phantom was used for CT performance evaluation to evaluate the image quality. X-ray irradiation conditions for image acquisition was fixed at 120 kVp, 100 mAs and scanned 10 mm axis with ultra-high resolution. The improvement of anisotropic 2D diffusion filtering that we suggested firstly, increase the contrast of the image by using histogram stretching to the original image for 0.4%, and multiplying the individual pixels by 1.2 weight value, and applying the anisotropic diffusion filtering. As a result, we could distinguished five holes until 0.75 mm in the original image but, five holes until 0.40 mm in the image with improved anisotropic diffusion filter. The noise of the original image was 46.0, the noise of the image with improved anisotropic 2D diffusion filter was decreased to 33.5(27.2%). In conclusion improved anisotropic 2D diffusion filter that we proposed could remove the noise of the CT image and improve the spatial resolution.

MU Fluence Reconstruction based-on Delivered Leaf Position: for IMRT Quality Assurance (세기조절방사선치료의 정도관리를 위한 모니터유닛 공간분포 재구성의 효용성 평가)

  • Park, So-Yeon;Park, Yang-Kyun;Park, Jong-Min;Choi, Chang-Heon;Ye, Sung-Joon
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • The measurement-based verification for intensity modulated radiation therapy (IMRT) is a time-and labor-consuming procedure. Instead, this study aims to develop a MU fluence reconstruction method for IMRT QA. Total actual fluences from treatment planning system (TPS, Eclipse 8.6, Varian) were selected as a reference. Delivered leaf positions according to MU were extracted by the dynalog file generated after IMRT delivery. An in-house software was develop to reconstruct MU fluence from the acquired delivered leaf position data using MATLAB. We investigated five patient's plans delivered by both step-and-shoot IMRT and sliding window technologies. The total actual fluence was compared with the MU fluence reconstructed by using commercial software (Verisoft 3.1, PTW) and gamma analysis method (criteria: 3%/3 mm and 2%/1 mm). Gamma pass rates were $97.8{\pm}1.33$% and the reconstructed fluence was shown good agreement with RTP-based actual fluence. The fluence from step and shoot IMRT was shown slightly higher agreement with the actual fluence than that from sliding window IMRT. If moving from IMRT QA measurements toward independent computer calculations, the developed method can be used for IMRT QA. A point dose calculation method from reconstructed fluences is under development for the routine IMRT QA purpose.

Surface Dose and Transmission Factor for Vacuum Cushion (Vacuum Cushion 사용시 표면선량과 투과율 평가)

  • 김미화;이병용;전미선
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.74-78
    • /
    • 2002
  • The individual (customized) immobilization has been used to reproduce the patients' set-up on daily base. There are many various devices available commercially. To evaluate dosimetric characteristics of vacuum cushion, we analysed the surface dose and transmission factor for d$_{max}$ when patient is immobilized with vacuum cushion. Experiments were performed with 4 MV (Varian 4/100, USA), 6 MV, 15 MV (Varian CL2100C/D, USA) photon beams and five field sizes (5$\times$5, 10$\times$10, 20$\times$20, 30$\times$30, 40$\times$40 $\textrm{cm}^2$) on each occasion. Outputs were measured from surface of polysterene phantom to d$_{max}$ with four different thicknesses of cushion, which is 12, 32, 48 mm and only vinyl without styroforms. As results, the transmission factor for thicknesses of vacuum cushion was ranged from 0.9953 to 1.0043. The more the thickness of vacuum cushion is thick, the more surface dose delivered to patient is increased. The surface dose vary with the thickness of vacuum cushion for energy and field size. The skin reactions may result. But the variation is not serious in the clinic.

  • PDF

Peripheral Dose Distributions of Clinical Photon Beams (광자선에 의한 민조사면 경계영역의 선량분포)

  • 김진기;김정수;권형철
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • The region, near the edge of a radiation beam, where the dose changes rapidly according to the distance from the beam axis is known as the penumbra. There is a sharp dose gradient zone even in megavoltage photon beams due to source size, collimator, lead alloy block, other accessories, and internal scatter ray. We investigate dosimetric characteristics on penumbra regions of a standard collimator and compare to those of theoritical model for the optimal use of the system in radiotherapy. Peripheral dose distribution of 6 W Photon beams represents penumbral forming function as the depth. Also we have discussed that the peripheral dose distribution of clinical photon beams, differences between calculation dose use of emperical penumbral forming function and measurements in penumbral region. Predictions by emperical penumbral forming functions are compared with measurements in 3-dimensional water phantom and it is shown that the method is capable of reproduceing the measured peripheral dose values usually to within the statistical uncertainties of the data. The semiconductor detector and ion chamber were positioned at a dmax depth, 5cm depth, 10cm depth, and its specific ratio was determined using a scanning data. The effective penumbra, the distance from 80% to 20% isodose lines were analyzed as a function of the distance. The extent of penumbra will also expand with depth increase. Difference of measurement value and model functions value according to character of the detector show small error in dose distribution of the peripheral dose.

  • PDF

Dosimetric Characteristics of Multileaf Collimator-based Intensity-modulated Arc Therapy for Stereotactic Radiosurgery (방사선수술 시 다엽 콜리메이터를 기초로 한 IMAT의 선량분포)

  • Yun, Sang-Mo;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.93-97
    • /
    • 2007
  • This study was designed to evaluate radiosurgery technique using multiple noncoplanar arc therapy with intensity modulated fine MLC shaped photon beam. The stereotactic radiosurgery was performed with 6-MV X-ray beams from a Clinac 21EX LINAC (Varian, Palo Alto, CA, USA) with a MLC-120, which features a full $40{\times}40cm$ field and is the first MLC for general use that offers 0.5 cm resolution for high precision treatment of small and irregular fields. We used a single isocenter and five gantry-couch combinations with a set of intensity modulated arc therapy. We investigated dosimetric characteristics of 2 cm sized spherical target volume with film (X-OMAT V2 film, Kodak Inc, Rochester NY, USA) dosimetry within $25{\times}25cm$ acrylic phantom. A simulated single isocentric treatment using inversely Planned 3D radiotherapy planning system demonstrated the ability to conform the dose distribution to an spherical target volume. The 80% dose level was adequate to encompass the target volume in frontal, sagittal, and transverse planes, and the region between the 40% and 80% isodose lines was $4.0{\sim}4.5mm$ and comparable to the dose distribution of the Boston Arcs. We expect that our radiosurgery technique could be a treatment option for irregular-shaped large intracranial target.

  • PDF

Property of Dose Distribution in Accordance with Dose Rate Variation in Intensity Modulated Radiation Therapy (세기조절방사선치료에서 선량율 변화에 따른 선량분포 특성)

  • Kang, Min-Kyu;Kim, Sung-Joon;Shin, Hyun-Soo;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.218-222
    • /
    • 2010
  • As radiation is irradiated from various directions in intensity modulated radiation therapy (IMRT), longer treatment time than conventional treatment method is taken. In case of the patients who have problem to keep same posture for long time because of pain and injury, reducing treatment time through increased dose rate is a way for effective treatment. This study measured and found out the variation of dose and dose distribution in accordance with dose rate variation. IMRT treatment plan was set up to investigate from 5 directions - $0^{\circ}$, $72^{\circ}$, $144^{\circ}$, $216^{\circ}$, $288^{\circ}$ - using ECLIPSE system (Varian, SomaVision 6.5, USA). To confirm dose and dose rate in accordance with dose rate variation, dose rate was set up as 100, 300, 500 MU/min, and dose and dose distribution were measured using ionization chamber (PTW, TN31014) and film dosimeter (EDR2, Kodak). At this time, film dosimeter was inserted into acrylic phantom, then installed to run parallel with beam's irradiating direction, 21EX-S (Varian, USA) was utilized as linear accelerator for irradiation. The measured film dosimeter was analyzed using VXR-16 (Vidar System Corporation) to confirm dose distribution.