MU Fluence Reconstruction based-on Delivered Leaf Position: for IMRT Quality Assurance

세기조절방사선치료의 정도관리를 위한 모니터유닛 공간분포 재구성의 효용성 평가

  • Park, So-Yeon (Department of Radiation Applied Life Science, Seoul National University Graduate School) ;
  • Park, Yang-Kyun (Department of Radiation Applied Life Science, Seoul National University Graduate School) ;
  • Park, Jong-Min (Department of Radiation Applied Life Science, Seoul National University Graduate School) ;
  • Choi, Chang-Heon (Department of Radiation Applied Life Science, Seoul National University Graduate School) ;
  • Ye, Sung-Joon (Department of Radiation Oncology, Seoul National University College of Medicine)
  • 박소연 (서울대학교 대학원 방사선응용생명과학 협동과정) ;
  • 박양균 (서울대학교 대학원 방사선응용생명과학 협동과정) ;
  • 박종민 (서울대학교 대학원 방사선응용생명과학 협동과정) ;
  • 최창헌 (서울대학교 대학원 방사선응용생명과학 협동과정) ;
  • 예성준 (서울대학교 의과대학 방사선종양학교실)
  • Received : 2011.02.14
  • Accepted : 2011.03.22
  • Published : 2011.03.30

Abstract

The measurement-based verification for intensity modulated radiation therapy (IMRT) is a time-and labor-consuming procedure. Instead, this study aims to develop a MU fluence reconstruction method for IMRT QA. Total actual fluences from treatment planning system (TPS, Eclipse 8.6, Varian) were selected as a reference. Delivered leaf positions according to MU were extracted by the dynalog file generated after IMRT delivery. An in-house software was develop to reconstruct MU fluence from the acquired delivered leaf position data using MATLAB. We investigated five patient's plans delivered by both step-and-shoot IMRT and sliding window technologies. The total actual fluence was compared with the MU fluence reconstructed by using commercial software (Verisoft 3.1, PTW) and gamma analysis method (criteria: 3%/3 mm and 2%/1 mm). Gamma pass rates were $97.8{\pm}1.33$% and the reconstructed fluence was shown good agreement with RTP-based actual fluence. The fluence from step and shoot IMRT was shown slightly higher agreement with the actual fluence than that from sliding window IMRT. If moving from IMRT QA measurements toward independent computer calculations, the developed method can be used for IMRT QA. A point dose calculation method from reconstructed fluences is under development for the routine IMRT QA purpose.

세기조절방사선치료(Intensity Modulated Radiotherapy, IMRT)의 정도관리를 위해서 독립적인 방법으로 선량검증을 하는 것은 중요하다. 독립적 선량검증을 위해 팬톰과 이온전리함을 이용한 측정 방법이 보편적으로 이루어지지만 많은 시간과 노력이 요구된다. 본 연구에서는 세기조절방사선치료 시 시간에 따른 다엽콜리메이터의 움직임을 기록한 dynalog 파일을 이용하여 치료계획에서 도출된 총 실제 플루언스와 실제 치료 시의 모니터유닛(monitor unit, MU) 공간분포를 비교함으로써 간편한 세기조절방사선치료 정도관리 기술을 개발하였다. DICOM RT plan 파일로부터 총 실제 플루언스를 추출하고 MATLAB 코드를 이용하여 실제 치료 시 MU 공간분포를 dynalog 파일로부터 계산하였다. 개발된 방법의 효용성을 검증하기 위해 단계별조사기법과 동적조사기법으로 치료 받은 각 5명의 환자 데이터를 후향적으로 분석하였다. 분석 방법은 상용프로그램(Verisoft 3.1, PTW, German)에서 제공하는 감마인덱스를 사용하였다. 분석 결과 실제 치료 시의 MU 공간분포와 치료계획 상의 MU 공간분포 일치도가 평균 $97.8{\pm}1.33$%로 높은 일치도를 나타냈다. MU 공간분포 재구성의 정확도는 동적조사기법보다 단계별조사기법이 평균 1.4% 높았다. 본 연구에서 개발된 기술을 통해 세기조절방사선치료의 선량검증을 효과적으로 수행할 수 있다. 또한 분할치료 시 선량보정에 적용함으로써 맞춤형치료(adaptive radiotherapy)를 위한 기초자료로 사용될 수 있을 것이다.

Keywords

References

  1. Hong CS, Lim J, Ju SG, Shin E, Han Y, Ahn YC. Comparison of the Efficacy of 2D Dosimetry Systems in the Pre-treatment Verification of IMRT. J. Korean Soc. Ther. Radiol. Oncol. 2009;27(2):91-102. https://doi.org/10.3857/jkstro.2009.27.2.91
  2. Wiersma RD, Xing L. Examination of geometric and dosimetric accuracies of gated step-and-shoot intensity modulated radiation therapy. Phys, Med. 2007 October;34(10):3962-3969. https://doi.org/10.1118/1.2776671
  3. Zygmanski P, Kung JH, Jiang SB, Chin L. Dependence of fluence errors in dynamic IMRT in leaf-positional errors varying with time and leaf number. Phys, Med. 2003 October; 30(10):2736-2749. https://doi.org/10.1118/1.1598674
  4. Litzenbeg DW, Moran JM, Fraass BA. Verification of dynamic and segmental IMRT delivery by dynamic log file analysis. J. Appl, Clin. Med. Phys, 2002;3(2):63-72. https://doi.org/10.1120/1.1449362
  5. Spirou SV, Chui CS. Delivery of Intensity-Modulated Beam Profiles With A Multileaf Collimator. In: Samuel Hellman. A Practical Guide To Intensity-Modulated Radiation Therapy. 1st ed. Madison, Wisconsin; Medical Physics Publishing. 2003:71-82.
  6. Varian Medical System, Inc. Varian Medical Systems. Eclipse Inverse Planning Administration and Physics. 2009.
  7. Kumar MD, Thirumavalavan N, Krishan DV, Babaiah M. QA of intensity-modulated beams using dynamic MLC log files. Journal of Medical Physics 2006;31(1):36-41. https://doi.org/10.4103/0971-6203.25668
  8. Lee JW, Park JH, Chung JB, Park JY, Choe BY, Suh TS, Lee DH, Hong S, Kang MY, Choi KS. Inverse Verification of the Dose Distribution for Intensity Modulated Radiation Therapy Patient-Specific Quality Assurance Using Dynamic MLC Log Files. J. Korean Phys, Soc. 2009 October;55(4):1649-1656. https://doi.org/10.3938/jkps.55.1649
  9. Varian Medical System, Inc. Varian Medical Systems. Dynalog File Viewer reference guide. 2003.
  10. Chen X, Yue NJ, Chen W, Saw CB, Heron DE, Stefanik D, Antemann R, Huq MS. A dose verification method using a monitor unit matrix for dynamic IMRT on Varian linear accelerators. Phy. Med. Biol. 2005;50:5641-5652. https://doi.org/10.1088/0031-9155/50/23/016
  11. Kung JH, Chen GTY, Kuchnir FK. A monitor unit verification calculation in intensity modulated radiotherapy as a dosimetry quality assurance. Phys, Med. 2000 October;27(10):2226-2230. https://doi.org/10.1118/1.1286553
  12. Xing L, Li JG. Computer verification of fluence map for intensity modulated radiation therapy. Phys, Med. 2000 September;27(9):2084-2092. https://doi.org/10.1118/1.1289374
  13. Langer M, Thai V, Papiez L. Improved leaf sequencing reduces segments of monitor units needed to deliver IMRT using multileaf collimators. Phys, Med. 2001 December;28(12):2450-2458. https://doi.org/10.1118/1.1420392
  14. Xing L, Chen Y, Luxton G, Li JG, Boyer AL. Monitor unit calculation for intensity modulated photon field by a simple scatter-summation algorithm. Phy. Med. Biol. 2000;45:N1-N7. https://doi.org/10.1088/0031-9155/45/3/401
  15. Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distribution. Phys, Med. 1998 May;25(5):656-661. https://doi.org/10.1118/1.598248