In this paper, we propose an adaptive pavement region detection method that is robust to changes of structural patterns in a natural scene. In order to segment out a pavement reliably, we propose two step approaches. We first detect the borderline of a pavement and separate out the candidate region of a pavement using VRays. The VRays are straight lines starting from a vanishing point. They split out the candidate region that includes the pavement in a radial shape. Once the candidate region is found, we next employ the adaptive multi-seed region growing(A-MSRG) method within the candidate region. The A-MSRG method segments out the pavement region very accurately by growing seed regions. The number of seed regions are to be determined adaptively depending on the encountered situation. We prove the effectiveness of our approach by comparing its performance against the performances of seed region growing(SRG) approach and multi-seed region growing(MSRG) approach in terms of the false detection rate.
In this paper, we have designed and implemented cluttering classification systems- unsupervised classifiers-for the processing of satellite remote sensing images. Implemented systems adopt various design patterns which include a factory pattern and a strategy pattern to support various satellite images'formats and to design compatible systems. The clustering systems consist of sequential clustering, K-Means clustering, ISODATA clustering and Fuzzy C-Means clustering classifiers. The systems are tested by using a Landsat TM satellite image for the classification input. As results, these clustering systems are well designed to extract sample data for the classification of satellite images of which there is no previous knowledge. The systems can be provided with real-time base clustering tools, compatibilities and components' reusabilities as well.
Proceedings of the Korean Information Science Society Conference
/
2007.06b
/
pp.27-31
/
2007
생물학적 서열 데이터는 크게 DNA 염기 서열과 단백질 아미노산 서열이 있다. 이들 서열은 일반적으로 많은 수의 항목들을 가지고 있어 그 길이가 매우 길다. 생물학적 데이터 서열들에는 보통 빈번하게 발생하는 부분 연속 서열들이 존재하는데 이들 서열들을 찾아내는 것은 다양한 서열 분석에서 유용하게 사용될 수 있다. 이를 위해 초기에는 Apriori 알고리즘을 기반으로 하는 순차패턴 마이닝 알고리즘들을 활용하는 방법들이 많이 제시되었다. 그중 PrefixSpan 알고리즘은 Apriori기반의 가장 효율적인 순차패턴 마이닝 기법이다. 하지만 이 알고리즘은 길이-1인 빈발 패턴들로부터 서열 패턴을 확장해나가는 방식으로 길이가 긴 연속 서열을 포함하는 생물학적 데이터 서열들에 대한 검색방법으로는 적합하지 않다. 최근에는 기존의 PrefixSpan방식을 이용하면서도 반복적인 처리과정을 줄인 MacosVSpan이 제안되었다. 하지만 이 알고리즘 또한 원본 데이터베이스보다 크기가 큰 별도의 프로젝션 데이터베이스를 사용함으로서 많은 비용부담이 발생하고 특히 길이가 긴 서열에 대해서는 더욱 효율적이지 못하다. 이에 본 논문에서 많은 양의 생물학적 데이터 서열들로부터 빈번한 연속서열을 고정길이 확장 트리를 이용하여 효과적으로 찾아내는 방법을 제안한다. 그리고 다양한 환경에서 실험을 통해 제안하는 방식이 MacosVSpan알고리즘에 비해 검색 성능이 우수함을 증명한다.
Proceedings of the Korea Society for Simulation Conference
/
1999.04a
/
pp.227-231
/
1999
디자인 패턴은 소프트웨어 -특히, 객체지향 소프트웨어- 의 개발시 재 사용성을 높기 위해서 사용되며, 이는 상속(Inheritance)과 같은 코드레벨 재사용 (code reuse) 보다 높은 레벨의 디자인 재사용 (design reuse)을 가능하게 한다. 디자인 패턴은 구체적인 문제에 대해 구체적인 해를 제공하는 cookbook과는 달리, 추상적인 문제에 대해 추상적인 해를 제시함으로써, 비슷한 부류의 문제에 적용할 수 있으므로 높은 재 사용성을 보장한다. 본 논문은 Retargetable한 특성을 갖는 Instruction set simulator의 개발에 디자인 패턴을 적용한 예를 보여줌으로써, 재 사용성 및 확장성을 높이는 방안을 소개한다.
Journal of Korea Society of Industrial Information Systems
/
v.12
no.1
/
pp.1-8
/
2007
When confronted with a query, question answering systems endeavor to extract the most exact answers possible by determining the answer type that fits with the key terms used in the query. However, the efficacy of such systems is limited by the fact that the terms used in a query may be in a syntactic form different to that of the same words in a document. In this paper, we present an efficient semantic query expansion methodology based on query patterns in a question category concept list comprised of terms that are semantically close to terms used in a query. The proposed system first constructs a concept list for each question type and then builds the concept list for each question category using a learning algorithm. The results of the present experiments suggest the promise of the proposed method.
Approximate Frequent pattern mining is to find approximate patterns, not exact frequent patterns with tolerable variations for more efficiency. As the size of database increases, much faster mining techniques are needed to deal with huge databases. Moreover, it is more difficult to discover exact results of mining patterns due to inherent noise or data diversity. In these cases, by mining approximate frequent patterns, more efficient mining can be performed in terms of runtime, memory usage and scalability. In this paper, we study the characteristics of an approximate mining algorithm based on probabilistic technique and run performance evaluation of the efficient approximate frequent pattern mining algorithm. Finally, we analyze the test results for more improvement.
Proceedings of the Korean Information Science Society Conference
/
2006.10d
/
pp.586-590
/
2006
본 논문에서는 다이아몬드 탐색(diamond search, DS)과 효율적인 3 단계 탐색(efficient three-step search, E3SS) 등의 블록 정합 기법(block matching algorithm, BMA)들에서 이용된 작은 다이아몬드(small diamond) 패턴을 광역 탐색에 적합하도록 확장시킨 고속의 움직임 추정 알고리즘을 제안한다. 제안된 알고리즘에서는 탐색 윈도우(search window)의 중앙으로부터 설치된 정사각형 패턴의 크기가 내부에서 대수적으로 감소되며 작은 다이아몬드 탐색(small diamond search, SDS) 기법에 의해 탐색이 완료된다. 실험 결과는 제안된 알고리즘이 DS 보다 평균 3개의 탐색 점을 더 적게 사용하고 E3SS에 비하여 약 5개 정도의 탐색 점 수에 대한 이득을 보이지만 움직임 추정상의 정확도는 다른 고속 BMA들과 거의 동일한 수준을 유지하는 것으로 확인된다.
Proceedings of the Korean Information Science Society Conference
/
2003.04a
/
pp.202-204
/
2003
경성 실시간 시스템(Hard Real-Time System)어서는 주기 태스크들의 엄격한 마감시간(Deadline) 보장이 시스템의 성능을 좌우한다. 본 논문에서는 CPU의 이용률(Utilization)이 높아 비율단조 정책으로는 마감시간을 보장 할 수 없는 주기 태스크들을 위해 확장된 스케줄 가능성 검사를 통해 수행할 태스크들의 공통 주기(L.C.M : Least Common Multiple)내에서 EDF(Earliest-Deadline First) 정책을 기반으로 마감시간 보장 수행패턴(Feasible Pattern)을 찾고, 이를 참조하여 우선순위를 고려하지 않고 태스크들을 강제 수행할 수 있게 하는 비율단조 기반의 스케쥴링 기법을 제안한다. EDF를 기반으로 생성된 패턴은 EDF 정책의 특성에 따라 CPU의 이용률을 100% 까지 가능하게 하며 패턴을 참조하여 강제 수행함으로써 EDF 정책이 갖는 실행시간 스케쥴링 오버헤드를 없앨 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.691-693
/
2005
본 연구에서는 FMM 신경망의 학습 알고리즘에서 하이퍼박스 확장과정에 수반되는 중첩현상을 분석하고, 이에 대한 축소 과정의 특성과 이를 보완하기 위한 새로운 활성화 함수에 관하여 고찰한다. 하이퍼박스 중첩 영역에 속하는 패턴 데이터는 그 분류 결과가 왜곡될 수 있다. 왜냐하면 학습과정에서 하이퍼박스상의 특징범위는 특징값의 빈도요소를 고려하지 않음으로 인하여 극소수의 비정상적 데이터에 관해서도 동일 수준으로 민감하게 확장되기 때문이다. 본 논문에서는 특징집합에서 가중치와 빈도요소를 반영하는 모델로서 이러한 중첩현상의 영향을 개선하는 방법론을 소개한다. 제안된 이론은 단순화된 패턴집합에 대하여 그 유용성을 이론적으로 고찰하며, 실제 패턴분류 문제에 적용하여 실험적으로 평가한다.
Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.130-132
/
2004
본 연구에서는 FMM 신경망을 이용한 패턴 분류 문제에서 학습 패턴에 포함되는 특징의 발생 빈도와 특징 값의 분포를 고려하는 네트워크 구조와 학습 방법론을 소개한다. 이를 위하여 하이퍼박스 소속함수의 산출 과정에 세부특징에 대한 가중치 개념이 적용되는 새로운 활성화 특성을 제안한다. 또한 하이퍼박스의 특징 범위와 빈도 및 특징 값의 분포를 유지하고 새롭게 정의된 하이퍼박스 생성, 확장, 축소기법을 적용한다 이는 가중치 개념을 통하여 각 특징별 중요도를 서로 다른 값으로 반영할 수 있게 하며, 특징의 분포 정보가 고려되어 기존 FMM 모델에 비하여 노이즈에 의한 영향을 개선하여 학습 효과를 증진시킬 뿐만 아니라 하이퍼박스의 생성 및 확장 과정 중에 학습패턴의 순서에 상관없이 동일한 특성을 보일 수 있게 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.