Proceedings of the Korean Information Science Society Conference (한국정보과학회:학술대회논문집)
- 2004.10a
- /
- Pages.130-132
- /
- 2004
- /
- 1598-5164(pISSN)
An FMM Neural Network Based on Feature Distributions and Weights
특징의 분포와 가중치를 고려한 FMM 신경망 모델
Abstract
본 연구에서는 FMM 신경망을 이용한 패턴 분류 문제에서 학습 패턴에 포함되는 특징의 발생 빈도와 특징 값의 분포를 고려하는 네트워크 구조와 학습 방법론을 소개한다. 이를 위하여 하이퍼박스 소속함수의 산출 과정에 세부특징에 대한 가중치 개념이 적용되는 새로운 활성화 특성을 제안한다. 또한 하이퍼박스의 특징 범위와 빈도 및 특징 값의 분포를 유지하고 새롭게 정의된 하이퍼박스 생성, 확장, 축소기법을 적용한다 이는 가중치 개념을 통하여 각 특징별 중요도를 서로 다른 값으로 반영할 수 있게 하며, 특징의 분포 정보가 고려되어 기존 FMM 모델에 비하여 노이즈에 의한 영향을 개선하여 학습 효과를 증진시킬 뿐만 아니라 하이퍼박스의 생성 및 확장 과정 중에 학습패턴의 순서에 상관없이 동일한 특성을 보일 수 있게 한다.
Keywords