• 제목/요약/키워드: 패각칼슘

검색결과 46건 처리시간 0.023초

꼬막 패각으로 제조한 젖산칼슘과 구연산칼슘의 순도 향상에 대한 연구 (Purity Improvement of Calcium Lactate and Calcium Citrate Prepared with Shell of Anadarac tegillarca granosa)

  • 강미숙;소관순;신동화
    • 한국식품위생안전성학회지
    • /
    • 제20권3호
    • /
    • pp.128-133
    • /
    • 2005
  • 꼬막 패각 회화분을 이용하여 칼슘 보조제로서 사용 할 수 있는 젖산칼슘과 구연산칼슘을 제조하였으며, ammonium chloride process(ACP) ammonium nitrate process(ANP)법을 적용하여 이들의 순도를 높이기 위한 실험을 하였다. 꼬막 패각 회화분을 젖산용액과 구연산용액과 반응시켜 얻은 젖산칼슘과 구연산칼슘의 순도는 각 용액의 농도에 따라 각각 $94.35-96.72\%$$87.58-93.06\%$이었다. 꼬막 패각 회화분에 ACP법 혹은 ANP법을 적용하여 정제한 탄산칼슘으로 제조한 젖산칼슘과 구연산칼슘의 순도는 각 용액의 농도에 따라 각각 $99.53-100.34\%$$99.32-99.88\%$를 나타내어 꼬막 패각 회화분을 직접 이용하여 제조한 것보다 순도가 상당히 높아졌으며, 식품첨가물공전의 규격기준에 적합한 칼슘제제를 얻을 수 있었다 꼬막 패각 회화분으로 제조한 젖산칼슘과 구연산칼슘의 백색도는 각각 91.8과 92.9이었으나 ACP법 혹은 ANP법을 적용한 경우는 각각 94.8-98.5와 99.4-101.5로서 높은 값을 나타내었다. 따라서 폐기물로 버려지는 꼬막 패각 회화분에 ACP법과 ANP법을 적용하여 정제한 탄산칼슘으로 제조한 젖산칼슘과 구연산칼슘은 순도와 백색도에서 우수한 것으로 판단되었다.

굴패각 재활용 방안에 관한 기초연구 -굴패각 소성가공특성- (A study on Calcination Characteristics of Powdered Oyster Shell)

  • 김종오;이상은;이창호
    • 유기물자원화
    • /
    • 제15권1호
    • /
    • pp.143-148
    • /
    • 2007
  • 본 연구는 대부분 매립 처분되고 있는 굴패각을 소성가공을 통한 약상 칼슘제 추출을 목적으로 굴패각의 이화화적인 특성과 열적특성 및 소성가구 후 패각의 특성 등 액상 칼슘제 추출을 위한 기초연구를 수행한 결과 굴패각 분쇄시 입자특성은 시료에 따라 입경의 차이가 큰 자이가 나타났으며, 소성온도에 따른 특성변화는 소성온도가 높을수록, 소성시산이 경과 할수록 무게감소량이 큰 것으로 나타났다. 또한 칼슘함량은 소성신간이 경과 할수록, 소성온도가 높을수록 칼슘함량이 증가하는 것으로 나타나 소성온도가 높고, 분말의 입자크기를 작게 할수록 소성가공이 가장 효율적인 것으로 나타났다. 아울러 소성가공된 패각은 식물이 이용할 수 있는 양이온치환능력(CEC) 함량이 30~60배까지 증가하는 하는 것으로 나타나 소성 가공된 굴패각을 식물에 유익한 영양소원으로 재활용 가능한 것으로 판단된다.

  • PDF

굴 패각의 전처리 조건에 따른 인산염 제거효율에 관한 연구 (A Study on Phosphate Removal Efficiency by Pre-Treatment Conditioning of Oyster Shells)

  • 우희은;김경민;이인철;김경회
    • 해양환경안전학회지
    • /
    • 제24권2호
    • /
    • pp.196-202
    • /
    • 2018
  • 굴 패각과 같은 반응성 재료는 사용 목적에 적합한 전처리 조건을 선택할 필요가 있다. 본 연구에서는 인 농도 제어를 목적으로 효율적인 굴 패각 사용을 위한 전처리 조건을 제안하는데 목적을 둔다. 굴 패각의 전처리(소성 온도, 소성 시간, 입자 크기)에 따른 인산염 제거 효율을 조사하였다. 또한 XAFS 분석 및 등온 흡착 실험을 통해 굴 패각의 인산염 제거특성에 대해 조사하였다. 실험 결과 소성 온도는 $600^{\circ}C$, 소성 시간은 6 h, 입자 크기는 0.355~0.075 mm에서 우수한 제거 효율을 확인하였다. 등온 흡착 실험 결과 Langmuir 모델이 굴 패각의 흡착에 적합한 것으로 나타났다. XAFS 분석 결과 $600^{\circ}C$에서 소성시킨 굴 패각에는 인산칼슘이 생성된 것이 확인되었다. 즉 굴 패각의 칼슘 이온 용출에 의한 인산칼슘 형성이 인산염의 농도 감소에 기여하고 있음을 확인하였다.

황산처리 굴패각을 이용한 유동성 뒷채움용 고화재 개발 (Development of Sulfated Oyster Shell-Based Solidifying Agent for Flowable Backfill Material)

  • 왕설;김성배;김창준
    • 청정기술
    • /
    • 제24권4호
    • /
    • pp.315-322
    • /
    • 2018
  • 탄산칼슘($CaCO_3$) 형태의 천연 굴패각을 포졸란 반응 물질인 생석회(CaO)로 전환하기 위해서는 고온(> $800^{\circ}C$)의 소성 공정이 필요하다. 이로 인한 과도한 에너지 비용 투입이 굴패각의 산업적 이용에 큰 걸림돌로 작용하였다. 본 연구의 목적은 소성과정 없이 굴패각을 뒷채움용 고화재 소재로 개발하는 것이다. 본 연구팀은 굴패각을 황산칼슘 형태로 전환하고, 이를 수산화나트륨 및 황토와 혼합하여 고화물을 생성시키는 방법을 제안하였다. 굴패각을 황산칼슘으로 전환시키기 위한 황산용액과 황산칼슘을 소석회($Ca(OH)_2$)로 전환하는 데 필요한 수산화나트륨 용액의 최적 농도를 결정하였다. 신규 고화재, 천연 굴패각, 석탄회 비율을 변화시켜 뒷채움재를 제조하고 양생한 후 공시체의 일축압축강도를 비교하였다. 고화재 함량 비율이 증가할수록 공시체의 일축압축강도는 증가한 반면 동일한 고화재 함량에서 석탄회 대비 천연 굴패각 함량이 증가할수록 공시체의 일축압축강도가 증가하였다. 본 결과는 천연 굴패각과 석탄회를 이용한 뒷채움재 제조에 있어서 황산처리 굴패각, 황토, 수산화나트륨 용액으로 구성된 고화재가 효과적으로 사용될 수 있음을 보여준다. 황산처리 굴패각 기반 고화재는 기존에 개발된 바 없고, 굴패각을 활용한 경제성 있는 뒷채움용 소재 개발과 굴패각의 산업적 활용도를 높이는데 커다란 기여를 할 것이다.

패각의 부존환경 및 재활용에 관한 연구 (A study on the environment of waste shell and its recycling method)

  • 이인곤
    • 한국결정성장학회지
    • /
    • 제10권2호
    • /
    • pp.159-165
    • /
    • 2000
  • 본 연구에서는 남해안 일대의 굴 고막, 바지락 패각에 대한 부존환경을 조사하였으며 그리고 부존환경 개선, 환경오염 방지 등을 위한 패각의 재활용 방안을 확립하였다. 패각의 부존환경은 공유수면의 불법매립 또는 연안지역에 야적 .방치된 상태였다. 부존패각의 효율적인 재활용을 위하여 성인 메카니즘 그리고 XRD, TG-DTA분석을 행한 결과, 탄산칼슘으로의 제조가 최적임을 알았다. 본 연구에서는 부존 패각을 탄산칼슘과 과립형의 패화석비료로 재활용하였다.

  • PDF

닭에 대(對)한 칼슘 공급원별(供給源別) 효율(?率)에 관(關)한 연구(硏究) (Studies on Calcium Availability in Various Sources by Chicken)

  • 장윤환
    • Applied Biological Chemistry
    • /
    • 제18권3호
    • /
    • pp.145-166
    • /
    • 1975
  • 닭에 대(對)한 칼슘공급원(供給源)의 효율(效率)을 측정(測定)하기 위(爲)하여 병아리시험(試驗)에서는 탄산(炭酸)칼슘, 인산(燐酸)2칼슘-2수화물(水化物) 및 인산(燐酸)2칼슘-무수물(無水物)을 이용(利用)하였고 산란계시험(産卵鷄試驗)에서는 탄산(炭酸)칼슘 및 패각(貝殼)을 사용(使用)하여 균형시험(均衡試驗)을 실시(實施)하였으며 내생(內生)칼슘측정(測定)을 위(爲)하여 동위원소희석법(同位元素稀釋法)을 적용(適用)하였다. 1. 병아리에 대(對)한 시험결과(試驗結果)가. 각구(各區)의 사료섭취량(飼料攝取量)사이에는 통계적(統計的)인 유의차(有意差)가 나타나지 않았으나 체중증가량(體重增加量)에 있어서는 인산(燐酸)2칼슘-2수화물(水化物)이 가장 우수(優秀)하였고 다음 인산(燐酸)2칼슘-무수물(無水物), 탄산(炭酸)칼슘의 순(順)으로 떨어졌다. 사료이용효율(飼料利用效率)에 있어서는 인산(燐酸)2칼슘-2수화물구(水化物區)가 탄산(炭酸)칼슘구(區)나 인산(燐酸)2칼슘-무수물구(無水物區)보다 좋게 나타났다. 나. 경골중(經骨中) 회분함량(灰分含量)에 있어서는 각구간(各區間) 비슷한 수치(數値)를 보였다. 다. 인산(燐酸)2칼슘-2수화물(水化物)을 급여(給與)한 구(區)의 경골회분중(脛骨灰分中)의 칼슘농도(濃度)는 다른 2개구(個區)에 비(比)하여 높았다. 라. 제단백혈장중(除蛋白血漿中)의 칼슘농도(濃度)에 있어서는 각처리간(各處理間)에 유의차(有意差)가 나타나지 않았다. 마. 인산(燐酸)2칼슘-2수화물(水化物)을 접취(攝取)한 병아리구(區)의 칼슘의 apparent retention은 65.9%로서 탄산(炭酸) 칼슘구(區)의 64.0%보다 조금 높았으며 인산(燐酸)2칼슘-무수물구(無水物區)의 59.9%보다 상당(相當)히 높은 수치(數値)이었다 바. 경골회분중(脛骨灰分中) 및 제단백혈장중(除蛋白血漿中) 칼슘대인(對燐)의 비율(比率)은 각구간(各區間) 비슷한 결과(結果)를 보였다. 사. 전배설(全排泄)칼슘이 내생배설(內生排泄)칼슘이 점(占)하는 비율(比率)은 인산(燐酸)2칼슘-2수화물(水化物)을 급여(給與)한 구(區)에서 35.6%이었으며 탄산(炭酸)칼슘구(區)나 인산(燐酸)2칼슘-무수(無水) 물구(物區)보다 높게 나타났다(31.0 혹(或)은 31.4%). 아. 병아리의 내생(內生)칼슘은 인산(燐酸)2칼슘-2수화물구(水化物區)에서 일당(日當) 17.2mg, 인산(燐酸)2칼슘-무수물구(無水物區)에서 16.1mg, 탄산(炭酸)칼슘구(區)에서 14.6mg이었다. 자. True retained calcium에 있어서는 인산(燐酸)2칼슘-2수화물구(水化物區)에서 일당(日當) 109.9mg이 나타났으므로 탄산(炭酸)칼슘구(區)의 98.7mg이나 인산(燐酸)2칼슘-무수구(無水區)의 92.7mg 보다 훨씬 높았다(P<0.01). 차. 칼숨의 true retention에 있어서는 인산(燐酸)2칼슘-2수화물구(水化物區), 탄산(炭酸)칼슘구(區) 및 인산(燐酸)2칼슘-무수물구(無水物區)에서 각각(各各) 78.1,75.1 몇 72.6%이었다. 2. 산란계(産卵鷄)에 대(對)한 시험결과(試驗結果) 가. 탄산(炭酸)칼슘 혹(或)은 패각(貝殼)을 급여(給與)한 살란계(産卵鷄)의 사료섭취량(館料攝取量), 산란율(産卵率) 및 사료요구율(飼料要求率)은 각각(各各) 비슷하게 나타났다. 나. 탄산(炭酸)칼슘을 섭취(攝取)한 산란계(産卵鷄)의 저단백혈장중(除蛋白血漿中) 칼슘농도(濃度)는 패각(貝穀)을 급여(給與)한 구(區)와 비등(比等)한 수치(數値)를 보였다. 다. 탄산(炭酸)칼슘구(區)의 칼슘의 apparent retention은 62%로서 패각구(貝殼區)의 52%보다 높게 나타났다(P<0.05). 라. 전배설(全排泄)칼슘中 내생배설(內生排泄)칼슘이 점(占)하는 비율(比率)은 탄산(炭酸)칼슘구(區)가 23.5%로서 패각구(貝穀區)의 15.6%보다 높았다. 마. 탄산(炭酸)칼슘급여구(給與區)의 내생배설(內生排泄)칼슘량(量)은 일살(日當) 310mg으로 패각구(貝殼區)의 261mg보다 약간 높았다 바. 탄산(炭酸)칼슘구(區)의 true retention은 70.7%이었으며 이는 패각급여구(貝殼給與區)의 59.2% 보다 높게 나왔다 (P<0.05).

  • PDF

바지락(Ruditapes philippinarum) 패각분말로부터 초산칼슘 제조 및 특성 (Optimization of Calcium Acetate Preparation from Littleneck Clam (Ruditapes philippinarum) Shell Powder and Its Properties)

  • 박성환;장수정;이현지;이균우;이준규;김용중;김진수;허민수
    • 한국식품과학회지
    • /
    • 제47권3호
    • /
    • pp.321-327
    • /
    • 2015
  • 패류의 주된 가공부산물인 패각은 전체중량의 50% 이상을 차지하며, 그 주성분이 불용성의 탄산칼슘으로서, 이를 천연 칼슘 소재로 활용하기 위해 바지락 패각을 소성처리($800^{\circ}C$, 8시간)한 소성분말로부터 가용성 개선 유기산(초산)처리 칼슘제조의 최적 조건을 규명하고자 하였다. 반응표면 분석법의 중심합성계획에 따라 제조한 11개 초산칼슘의 pH, 용해도 및 수율로부터 구명한 최적 반응조건은 초산 2.57 M 비율에 대하여 바지락 소성분말 1.57M이었으며, 이의 최적조건을 적용한 바지락 초산칼슘의 실측 pH, 용해도 및 수율은 각각 pH 7.00, 96.09% 및 220.87%로서 예측치와 유사한 결과를 얻었다. 초산칼슘의 완충능은 pH 4.89-4.92 범위였으며, 초산칼슘의 칼슘함량은 22% 내외, 20% 초산칼슘의 용해도는 96.09-100.10% 범위였다. FT-IR, XRD 분석 및 FESEM을 통한 미세구조는 비정형과 관상형이 혼합된 결정으로서 calcium acetate monohydrate로 확인되었다. 바지락 패각은 칼슘소재로서 뿐만 아니라 가용성을 높인 유기산 칼슘으로 칼슘강화용 식품소재로서의 이용 가능성이 확인되었다.

패각을 이용한 인산칼슘계 화합물의 제조에 관한 연구 (A study on the preparation of phosphatic calcium compounds using the shell resources)

  • 이인곤;김판채
    • 한국결정성장학회지
    • /
    • 제10권2호
    • /
    • pp.171-176
    • /
    • 2000
  • 패각으로부터 얻어지는 고순도의 소석회와 탄산칼슘을 이용하여 인산1수소칼슘, 수산화아파타이트, 골회 및 인산3칼슘과 같은 인산칼슘계 화합물을 제조하였다. 인산2수소칼슘은 고순도의 소석회와 인산용액을 이용하여 제조하였으며, 그리고 인산1수소칼슘을 출발원료로 하여 고상반응법에 의해 골회를 제조하였고 또 수열처리법을 이용하여 수산화아파타이트를 제조하였다. 인산3칼슘의 제조는 골회와 고순도의 탄산칼슘을 혼합한 뒤 고상반응시켜 제조하였다. 본 연구에서는 이상과 같은 인산칼슘계 화합물에 대한 최적의 제고공정 및 제조 조건을 확립하였다.

  • PDF

반응표면분석법을 이용한 개조개(Saxidomus purpuratus) 패각분말로부터 가용성 초산칼슘의 제조 및 특성 (Characteristics and Preparation of Calcium Acetate from Butter Clam (Saxidomus purpuratus) Shell Powder by Response Surface Methodology)

  • 이현지;정남영;박성환;송상목;강상인;김진수;허민수
    • 한국식품영양과학회지
    • /
    • 제44권6호
    • /
    • pp.888-895
    • /
    • 2015
  • 패류의 주된 가공부산물인 패각은 주성분이 불용성의 탄산 칼슘으로, 이를 천연 칼슘소재로 활용하기 위해 개조개 패각의 소성분말로부터 가용성 개선 유기산(초산) 처리 칼슘 제조의 최적조건을 구명하고자 하였다. 반응표면분석법을 이용하여 제조한 11개의 시제 초산칼슘의 pH, 용해도 및 수율로부터 구명한 최적 반응조건은 초산 2.70 M 비율에 대하여 개조개 소성분말 1.05 M이었으며, 이의 최적조건을 적용한 개조개 초산칼슘의 실측 pH, 용해도 및 수율은 각각 pH 7.04, 93.0% 및 267.5%로 예측치와 유사한 결과를 얻었다. 시제 초산칼슘의 완충능은 pH 4.88~4.92 범위였으며, 칼슘 함량과 용해도는 20.7~22.8 g/100 g과 97.2~99.6%였다. FT-IR, XRD 분석 및 FESEM을 통한 미세구조는 비정형 결정으로 calcium acetate monohydrate로 확인되었다. 개조개 패각은 칼슘소재뿐만 아니라 가용성을 높인 유기산 칼슘으로 칼슘강화용 식품소재로의 이용 가능성이 높을 것으로 판단되었다.

전복패각을 침전법의 원료로 이용한 calcium phosphates의 합성 (Synthesis of calcium phosphates from abalone shells via precipitation)

  • 문성욱;이병우
    • 한국결정성장학회지
    • /
    • 제30권4호
    • /
    • pp.143-149
    • /
    • 2020
  • 전복패각을 Ca원으로 이용하여 바이오 소재로 중요한 인산칼슘(calcium phosphates)들을 침전법을 통해 합성하였다. 전복패각에서 유래한 수산화칼슘(Ca(OH)2)을 칼슘 공급원(전구체)으로 사용하였다. 수용액상에서 수산화칼슘과 인산(H3PO4)을 반응시켜 침전반응을 유도하여 인산칼슘화합물로의 합성을 유도하였다. 초기 전구체 Ca/P 비율을 1.50, 1.59 및 1.67로 조절하였으며 이 조성변화와 침전물에 대한 열처리가 분말 및 소결체의 물성에 미치는 영향에 대해 조사하였다. 초기 전구체 Ca/P 비율을 조절함으로써 소결체 상합성의 조절이 가능하였고, 1150℃에서 소결한 소결체에서(hydroxyapatite(HAp), β-tricalcium phosphate(β-TCP) 및 HAp와 β-TCP가 혼합된 2상 인산칼슘(BCP, HA/β-TCP))들이 합성되었다. 이러한 결과는 저비용, 고가용성을 가지는 경제적인 출발물질로부터 고부가가치 인산칼슘을 합성할 수 있는 가능성을 보여주었다.