• Title/Summary/Keyword: 판매예측

Search Result 258, Processing Time 0.029 seconds

Research on Prediction of Consumable Release of Imported Automobile Utilizing System Dynamics - Focusing on Logistics Center of A Imported Automobile Part (시스템다이내믹스를 활용한 수입 자동차 소모품 출고예측에 관한 연구 - A 수입 자동차 부품 물류센터를 중심으로)

  • Park, Byooung-Jun;Yeo, Gi-Tae
    • Journal of Digital Convergence
    • /
    • v.19 no.1
    • /
    • pp.67-75
    • /
    • 2021
  • Despite the increase in sales of imported vehicles in Korea, research on the sales forecast of parts logistics centers is very limited. This study aims to perform a sales prediction on bestselling goods in the automobile part logistics center. System dynamics was adopted as a methodology for the prediction method, which considered causal relationship of variables that affected the dynamic characteristics and feedback loops. The analysis results showed that the consumable sales amount of oil increased over time. As a result of conducting the MAPE, the model was assessed to be a reasonable predictive model of 31.3%. In addition, the sales of battery products increased from every October in both of actual and predicted data followed by the peak sales in December and then decrease from next February. This study has academic implications that it secured actual data of specific imported automobile part logistics center, which has not done before in previous studies and quantitatively analyzed the prediction of the quantity of released goods of future sales through system dynamics.

Statistical Prediction of Used Tablet PC Transaction Price among Consumers (소비자 사이의 중고 태블릿PC 거래 가격의 통계적 예측)

  • Younghee Go;Sohyung Kim;Yujin Chung
    • Journal of Industrial Convergence
    • /
    • v.20 no.12
    • /
    • pp.179-186
    • /
    • 2022
  • This study aims to develop a predictive model to suggest a used sales price to sellers and buyers when trading used tablet PCs. For model development, we analyzed the real used tablet PC transaction data and additionally collected detailed product information. We developed several predictive models and selected the best predictive model among them. Specifically, we considered a multiple linear regression model using the used sales price as a dependent variable and other variables in the integrated data as independent variables, a multiple linear regression model including interactions, and the models from stepwise variable selection in each model. The model with the best predictive performance was finally selected through cross-validation. Through this study, we can predict the sales price of used tablet PCs and suggest appropriate used sales prices to sellers and buyers.

Sales Prediction of Electronic Appliances using a Convergence Model based on Artificial Neural Network and Genetic Algorithm (인공신경망과 유전자 알고리즘 기반의 융합모델을 이용한 가전제품의 판매예측)

  • Seo, Kwang-Kyu
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.177-182
    • /
    • 2015
  • The brand and product awareness of Korean electronics companies in the North American market has grown significantly and North American consumers has been recognized as an innovative technology products good performance of Korean electronics appliances. The consumer need of energy saving has led to a rise in market share because Korean electronics appliances have the excellence in energy saving aspects. The expansion of smartphones and mobile devices and the development of smart grid technology can affect electronics market. Domestic companies are continuously develop new product to provide consumers convenient with a variety of additional features combined consumer products. This study proposes a convergence model for sales prediction of electronic appliances using sales data of A company from the North American market. We develop the convergence model for sales prediction based on based on artificial neural network and genetic algorithm. In addition, we validate the superiority of the proposed convergence model by comparing the prediction performance of traditional prediction models.

Development of a Sales Prediction Model of Electronic Appliances using Artificial Neural Networks (인공신경망을 이용한 가전제품의 판매예측모델 개발)

  • Seo, Kwang-Kyu
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.209-214
    • /
    • 2014
  • Despite the recession of the global market, the domestic electronic appliance companies dominated TV market in North America. They took both the premium and mid-priced product market and achieved both profitability and volume due to strong product competitiveness and brand power. Despite doing well in the North American market, the domestic TV manufacturers are worried about product development, marketing and sales strategies to remain the continuous competitiveness in the TV market. This study proposes the a sales prediction model of electronic appliances using sales data of S company from the North American market. We develop the sales prediction models based on multiple regression analysis and artificial neural network and compare two models. Especially, this study analyzes the relevance between the TV sales and TV main features in order to improve the price competitiveness or improve the value of TV products.

Sales Forecasting for Inventory Control on Seasonal fashion product (계절유행상품 재고관리를 위한 판매예측)

  • 안봉근
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.953-959
    • /
    • 2002
  • 계절유행상품의 수요는 연중 성수기가 길지 않고 매년 유행과 제품디자인 변화가심한 경향이 있어 수요예측에 과거의 판매정보의 유용성이 크지 않다. 성수기 초반의 수요가 연간 수요결정에 매우 중요하며 후반부수요가 급격히 감소하는 특성이 있다. 반면 이월상품의 잔존가치가 매우 낮지만 매출마진이 높아 수요예측의 정확도에 따라 수익률이 큰 영향을 받는다. 이러한 이유로 기존의 수요예측방법을 계절상품에 적용하기에 무리가 따르며 예측오차의 비용이 매우 커서 계절상품 관리에 이용할 수 없다. 본 연구에서 성수기를 하위기간으로 구분하여 시즌 초반부 수요발생시점을 측정하여 초반부 기간별수요량을 구하고 이를 근거로 기간 누적수요비율을 quantile regression에 의거 추정하여 기간별 수요량과 전제 수요량을 예측하는 방법을 제시하고 모의자료를 사용하여 이 모형의 우수성을 평가하였다.

  • PDF

Prediction of Good Seller in Overseas sales of Domestic Books Using Big Data (빅데이터를 활용한 국내 도서의 해외 판매시 굿셀러 예측)

  • Kim, Nayeon;Kim, Doyoung;Kim, Miryeo;Jung, Jiyeong;Kim, Hyon Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.401-404
    • /
    • 2022
  • 한국 문학이 세계로 뻗어나감에 따라 해외 시장에서 자리를 잡는 것이 중요해진 시점이다. 본 연구에서는 2016 년도부터 2020 년도까지 최근 5 년간 해외 출간된 도서들 중에서 굿셀러로 분류되는 누적 5 천부 이상 판매 여부를 예측하고자 했다. 굿셀러로 분류되는 도서는 전체 번역 도서 중 적은 비율을 차지하여 데이터 불균형이 발생하였으며, 본 연구에서는 SMOTE 기법과 앙상블 알고리즘을 적용하여 데이터 불균형 문제를 해결하였다. 그 결과, 데이터 클래스 비율이 1:1 에 가까울수록 성능 개선 효과가 나타났으며 LightGBM 모델이 99.83%의 AUC 값을 얻어 다른 앙상블 알고리즘에 비해 가장 좋은 예측 성능을 보임을 검증하였다. 또한 누적 5 천부 이상 판매 여부 예측에 있어 큰 영향을 미치는 변수로는 작가가 가장 중요한 요인으로 나타났으며 출간 국가, 그리고 평점 평균, 평점 참여자 수 같은 온라인 요인도 판매 예측에 유의미한 변수로 나타난 것을 확인할 수 있었다.

MSRP Prediction System Utilizing KERAS and DNN (Keras와 DNN을 이용한 자동차 MSRP 예측 시스템)

  • Kang, Jiwon;Yun, Hyonbin;Lee, Sanghyun;Choi, Hyunho;Moon, Yoo-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.355-356
    • /
    • 2021
  • 본 논문에서는 Python 3의 Keras 모듈을 이용하여 특정 자동차에 대한 최적의 판매자권장소비자가격(MSRP)을 예측하는 시스템을 제안한다. 이 시스템은 2004년에 미국에서 시판된 428종류의 자동차에 대한 정보를 제조사, 차종, 생산지, 엔진 크기, 실린더 수, 시내 주행 시 연비, 고속도로 주행 시 연비, 마력, 차체 무게, 차체 길이의 독립변수를 사용하여 자체적으로 딥러닝한 회귀모델을 통해 특정 지표가 주어진 차량에 대해 종속변수인 판매자권장소비자가격을 예측한다. Optimizer를 adam으로, 학습률을 0.005으로 설정한 경우의 검증 MAE 값이 3842.98로 가장 낮게 산출되었고, 해당 모델의 결과는 예측값과 실제값의 오차율이 ±15% 정도 내외로 예측된 표본의 비율이 약 80.14%로 측정되었다. 위 모델은 향후 신차 가격 결정 및 중고차 시장에서 구매, 판매 결정을 돕는 등 특정 시장 내에서 다양한 자동차의 가치를 판단하기에 유용할 것으로 전망된다.

  • PDF

Sales Volume Prediction Model for Temperature Change using Big Data Analysis (빅데이터 분석을 이용한 기온 변화에 대한 판매량 예측 모델)

  • Back, Seung-Hoon;Oh, Ji-Yeon;Lee, Ji-Su;Hong, Jun-Ki;Hong, Sung-Chan
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.29-38
    • /
    • 2019
  • In this paper, we propose a sales forecasting model that forecasts the sales volume of short sleeves and outerwear according to the temperature change by utilizing accumulated big data from the online shopping mall 'A' over the past five years to increase sales volume and efficient inventory management. The proposed model predicts sales of short sleeves and outerwear according to temperature changes in 2018 by analyzing sales volume of short sleeves and outerwear from 2014 to 2017. Using the proposed sales forecasting model, we compared the sales forecasts of 2018 with the actual sales volume and found that the error rates are ±1.5% and ±8% for short sleeve and outerwear respectively.

  • PDF

A Sales Forecasting Method Based on Customer Characteristics and Sales Big Data (고객 특성과 상품 판매 빅데이터를 활용한 판매 예측 방법)

  • Lee, Myung Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.628-630
    • /
    • 2014
  • 상품 판매량의 변화를 예측하는 것은 기업의 경영에 있어서 매우 중요한 요소이며, 상품의 재고 관리 등에 큰 도움을 줄 수 있다. 최근 여러 분야에서 그동안 수집된 방대한 양의 빅데이터를 분석하여 마케팅에 활용하려는 연구가 진행 중이다. 이 논문에서는 상품 판매 빅데이터로부터 고객의 특성에 따른 상품 판매량과 고객 특성별 상품 판매량의 변화 추이를 분석하고, 분석 결과를 바탕으로 각 상품별 판매량을 예측할 수 있는 방법을 제안한다. 이 방법을 활용하면 고객의 변화에 따른 상품의 판매량을 예측할 수 있으므로, 기업 경영에 있어서 생산관리, 전략수립, 마케팅 등에서 큰 효과를 얻을 수 있다.