본 연구에서는 판매량 증대와 효율적인 재고 관리를 위해 지난 5년간 온라인 쇼핑몰 'A'에서 누적된 빅데이터를 활용하여 기온 변화에 따른 반팔 티셔츠와 아우터웨어(outer wear)의 판매량을 예측하는 판매 예측 모델을 제안한다. 제안한 모델은 2014년부터 2017년도까지 기온 변화에 따른 반팔 티셔츠와 아우터웨어의 판매량을 분석하여 2018년 기온 변화에 따른 반팔티셔츠와 아우터웨어의 판매량을 예측한다. 제안한 판매 예측 모델을 사용하여 반팔티셔츠와 아우터웨어의 판매량 예측값과 실제 2018년 판매량을 비교 분석한 결과 반팔티셔츠와 아우터웨어의 예측 오차율은 각각 ±1.5%와 ±8%를 나타내었다.
본 연구에서는 대형 할인점의 가공 식품 중 음료, 주류, 빙과류 판매량을 중심으로 기상 조건과의 관련성을 파악하고자 하였다. 이를 위해 음료와 주류, 빙과 품목에 대한 일별 매출량 자료와 기상청에서 제공하는 기온, 강수량 등의 일별 기상 자료를 사용하였다. 음료, 주류, 빙과류의 판매량은 기온 요소와 밀접한 상관관계를 갖는다. (중략)
상품 판매량의 변화를 예측하는 것은 기업의 경영에 있어서 매우 중요한 요소이며, 상품의 재고 관리 등에 큰 도움을 줄 수 있다. 최근 여러 분야에서 그동안 수집된 방대한 양의 빅데이터를 분석하여 마케팅에 활용하려는 연구가 진행 중이다. 이 논문에서는 상품 판매 빅데이터로부터 고객의 특성에 따른 상품 판매량과 고객 특성별 상품 판매량의 변화 추이를 분석하고, 분석 결과를 바탕으로 각 상품별 판매량을 예측할 수 있는 방법을 제안한다. 이 방법을 활용하면 고객의 변화에 따른 상품의 판매량을 예측할 수 있으므로, 기업 경영에 있어서 생산관리, 전략수립, 마케팅 등에서 큰 효과를 얻을 수 있다.
온라인 쇼핑의 대중화로 인해 많은 의류 상품이 온라인 쇼핑을 통해 소비된다. 의류 상품은 다른 상품과 달리 판매량이 일정하지 않고 날씨의 변화에 따라 판매량이 변화하는 특징이 있다. 따라서 의류 상품의 머신 러닝을 적용한 효율적인 재고 관리 시스템에 대한 연구는 매우 중요하다. 본 논문에서는 의류 업체 'A'로부터 실제 의류 상품 판매량 데이터를 수집하고 판매량 데이터와 같은 시계열 데이터의 예측에 많이 활용되는 LSTM(Long Short-Term Memory)과 Bidirectional-LSTM(Bi-LSTM)의 학습에 사용하여 LSTM과 Bi-LSTM의 판매량 예측 효율을 비교 분석하였다. 시뮬레이션 결과를 통해 LSTM 기술 대비 Bi-LSTM은 시뮬레이션 시간은 더 많이 소요되지만 의류 상품 판매량 데이터와 같은 비주기성 시계열 데이터의 예측 정확도가 동일하다는 것을 확인하였다.
이 연구의 목적은 온라인 판매에 집중하는 창업 기업들의 온라인 판매량 증진을 위해 구매 전환율에 영향을 미치는 요인을 확인하기 위한 것이다. 일반적으로 온라인 판매에 있어서는 네이버 및 다음 등 검색엔진 및 판매하는 마켓별로 CPC 또는 전시입찰 등의 광고를 집행을 통해 매출에 긍정적인 영향을 미친다고 알려졌으나, 최근에는 과다경쟁으로 인한 광고비의 집행비용의 인상율에 비해, 광고로 인한 판매율-구매전환율(ROAS)이 떨어짐을 확인되고 있어, 판매자들에게 혼란을 주고 있다. 매출 및 구매전환율을 늘리기 위한 효과적인 방법을 찾는 과정에서, 온라인 광고를 하면서도 그 외 요인들로 인해 경쟁사보다 판매량이 높은 상품들을 확인할 수 있었고, 소비자들에게 긍정적인 영향을 미치는 구매 단서를 통해 판매량에 긍정적 영향을 끼치는 것으로 보여, 연구를 하게 되었으며, 온라인 판매되는 상품들의 비교를 통해 가장 긍정적 영향을 미치는 요인을 확인하고자 한다. 또한, 수많은 상품들이 있는 온라인 시장에서 온라인 광고는 소비자들에게 자신의 상품이 노출되기 위한 필수불가결인 요소이나, 광고를 하면서도, 구매전환율(ROAS)을 높이기 위한 구매에 영향에 미치는 요인을 찾아, 온라인 판매 기업들의 효율을 높이기 위한 연구이다. 구매 전환율에 영향을 미치는 요인이 확인되었을 때, 해당 요인들에 집중하여, 결과적으로 판매량을 늘리고 매출을 높일 수 있을 것이다.
언제 어디서나 사용 가능한 스마트기기를 통한 온라인 쇼핑이 보편화되어 소비자들은 손쉽게 패션 관련 상품을 구입할 수 있다. 따라서 소비자들은 패션 관련 상품을 구매할 때 날씨, 판매 가격과 같은 다양한 환경 변수에 반응하여 상품을 구매한다. 따라서 효율적인 재고 관리를 위해 판매된 상품들의 빅데이터를 활용하는 것이 패션 산업에서 매우 중요하다. 본 논문에서는 국내 패션 회사 'A'의 실제 상품 판매 빅데이터를 활용하여 제안한 빅데이터 분석 알고리즘을 통해 기온 변화에 따른 패션 상품의 판매량 변화를 분석하였다. 분석 결과에 따르면, 제안한 빅데이터 분석 알고리즘을 통해 예상할 수 있는 판매량 결과와 예상하지 못한 판매량 결과를 얻었다.
본 논문에서는 음료 판매 데이터 분석 및 판매량을 예측하는 방법을 제안하고자 하였다. 이를 위해 날씨와 음료 판매량이 상관관계가 있다고 가정하고, 온도, 습도를 입력으로 하여 판매량을 출력으로 하는 다항식 함수 관계를 모델링하였다. 본 논문에서는 제안한 방식의 유용성을 확인하기 위해 카페의 음료 판매 데이터를 2014년 2월부터 약 4개월 동안 수집하였고, 판매량 예측 알고리즘의 성능이 우수함을 확인하였다.
본 연구에서는 급변하고 있는 세계 경제 환경 하에서 중국 자동차 산업의 발전 현황과 자동차 산업과 관련한 중국 정부의 정책을 살펴보고, 중국 내 소비자들의 자동차 구입에 대해 소비자 동향 조사를 실시하였다. 중국 정부의 강력한 국가 배출가스 규제정책과 내연기관 자동차 제조·판매 기준의 강화에도 불구하고 소비자들은 다양한 이유로 앞으로 자동차를 구매 시 내연기관차를 선택하겠다는 응답비율이 59.6%에 달하는 등 정부 정책과 소비자 인식 사이에는 적지 않은 차이가 존재하고 있음을 확인하였다. 또한, 최근의 중국 내 자동차 판매량의 감소 추세를 발견하여 2010년 1월부터 2020년 12월까지 월별 판매량을 학습용 데이터로, 2021년 1월부터 2022년 11월 동안의 판매량을 평가용으로 구분하여 향후 중국의 자동차 수요를 예측하는 시계열 모형들을 제안, 평가하였다. 그리고 각 시계열모형을 적용하였을 때의 2023년도의 월별 예측 판매량을 보였다.
IT산업의 새로운 패러다임으로 빅데이터 분석이 주요한 기술로 부각되고 있다. 본 논문에서는 빅데이터를 수집, 분석하여 이를 통해 피자 판매량을 예측하는 모델을 제안한다. 판매량 예측을 위하여 과거 판매 데이터와 함께 공휴일, 날씨, 뉴스기사, 경제지표, 트렌드, 스포츠 이벤트 등의 데이터를 수집하여 이용하였으며, 판매량 예측 방법으로는 회기분석과 인공신경망 학습 등을 사용하여 빅데이터를 사용하지 않은 경우와 정확도를 비교하였다. 실험 결과 빅데이터를 이용함으로써 예측 오차율이 5%이상 향상됨을 확인하였다.
전력수급의 정확한 예측은 국민들의 일상적 생활 유지, 산업활동, 그리고 국가경영을 위하여 매우 중요하다. 본 연구에서는 시계열모형화에 의해 전력판매량을 예측한다. 실제 자료분석을 통하여 입력시계열로서 냉난방도일과 개입변수로 펄스함수를 사용한 전이함수모형이 다른 시계열모형에 비해서 제곱근평균제곱오차 및 평균절대오차의 의미에서 더 우수하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.