• 제목/요약/키워드: 판매량

검색결과 164건 처리시간 0.024초

빅데이터 분석을 이용한 기온 변화에 대한 판매량 예측 모델 (Sales Volume Prediction Model for Temperature Change using Big Data Analysis)

  • 백승훈;오지연;이지수;홍준기;홍성찬
    • 한국빅데이터학회지
    • /
    • 제4권1호
    • /
    • pp.29-38
    • /
    • 2019
  • 본 연구에서는 판매량 증대와 효율적인 재고 관리를 위해 지난 5년간 온라인 쇼핑몰 'A'에서 누적된 빅데이터를 활용하여 기온 변화에 따른 반팔 티셔츠와 아우터웨어(outer wear)의 판매량을 예측하는 판매 예측 모델을 제안한다. 제안한 모델은 2014년부터 2017년도까지 기온 변화에 따른 반팔 티셔츠와 아우터웨어의 판매량을 분석하여 2018년 기온 변화에 따른 반팔티셔츠와 아우터웨어의 판매량을 예측한다. 제안한 판매 예측 모델을 사용하여 반팔티셔츠와 아우터웨어의 판매량 예측값과 실제 2018년 판매량을 비교 분석한 결과 반팔티셔츠와 아우터웨어의 예측 오차율은 각각 ±1.5%와 ±8%를 나타내었다.

  • PDF

기상 조건이 대형 할인점 가공 식품 판매량에 미치는 영향 - 음료, 주류, 빙과류를 중심으로 -

  • 박신애;이승호
    • 대한지리학회:학술대회논문집
    • /
    • 대한지리학회 2004년도 춘계학술대회
    • /
    • pp.49-49
    • /
    • 2004
  • 본 연구에서는 대형 할인점의 가공 식품 중 음료, 주류, 빙과류 판매량을 중심으로 기상 조건과의 관련성을 파악하고자 하였다. 이를 위해 음료와 주류, 빙과 품목에 대한 일별 매출량 자료와 기상청에서 제공하는 기온, 강수량 등의 일별 기상 자료를 사용하였다. 음료, 주류, 빙과류의 판매량은 기온 요소와 밀접한 상관관계를 갖는다. (중략)

  • PDF

고객 특성과 상품 판매 빅데이터를 활용한 판매 예측 방법 (A Sales Forecasting Method Based on Customer Characteristics and Sales Big Data)

  • 이명현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.628-630
    • /
    • 2014
  • 상품 판매량의 변화를 예측하는 것은 기업의 경영에 있어서 매우 중요한 요소이며, 상품의 재고 관리 등에 큰 도움을 줄 수 있다. 최근 여러 분야에서 그동안 수집된 방대한 양의 빅데이터를 분석하여 마케팅에 활용하려는 연구가 진행 중이다. 이 논문에서는 상품 판매 빅데이터로부터 고객의 특성에 따른 상품 판매량과 고객 특성별 상품 판매량의 변화 추이를 분석하고, 분석 결과를 바탕으로 각 상품별 판매량을 예측할 수 있는 방법을 제안한다. 이 방법을 활용하면 고객의 변화에 따른 상품의 판매량을 예측할 수 있으므로, 기업 경영에 있어서 생산관리, 전략수립, 마케팅 등에서 큰 효과를 얻을 수 있다.

LSTM과 Bi-LSTM을 사용한 비주기성 시계열 데이터 예측 성능 비교 분석 (Comparative Analysis of Prediction Performance of Aperiodic Time Series Data using LSTM and Bi-LSTM)

  • 이주형;홍준기
    • 한국빅데이터학회지
    • /
    • 제7권2호
    • /
    • pp.217-224
    • /
    • 2022
  • 온라인 쇼핑의 대중화로 인해 많은 의류 상품이 온라인 쇼핑을 통해 소비된다. 의류 상품은 다른 상품과 달리 판매량이 일정하지 않고 날씨의 변화에 따라 판매량이 변화하는 특징이 있다. 따라서 의류 상품의 머신 러닝을 적용한 효율적인 재고 관리 시스템에 대한 연구는 매우 중요하다. 본 논문에서는 의류 업체 'A'로부터 실제 의류 상품 판매량 데이터를 수집하고 판매량 데이터와 같은 시계열 데이터의 예측에 많이 활용되는 LSTM(Long Short-Term Memory)과 Bidirectional-LSTM(Bi-LSTM)의 학습에 사용하여 LSTM과 Bi-LSTM의 판매량 예측 효율을 비교 분석하였다. 시뮬레이션 결과를 통해 LSTM 기술 대비 Bi-LSTM은 시뮬레이션 시간은 더 많이 소요되지만 의류 상품 판매량 데이터와 같은 비주기성 시계열 데이터의 예측 정확도가 동일하다는 것을 확인하였다.

온라인 판매시, 판매량과 매출에 긍정적 영향을 미치는 요인에 관한 연구 또는 ROAS(구매 전환율)에 영향을 미치는 요인 분석

  • 서아라;박우진
    • 한국벤처창업학회:학술대회논문집
    • /
    • 한국벤처창업학회 2017년도 춘계학술대회
    • /
    • pp.35-35
    • /
    • 2017
  • 이 연구의 목적은 온라인 판매에 집중하는 창업 기업들의 온라인 판매량 증진을 위해 구매 전환율에 영향을 미치는 요인을 확인하기 위한 것이다. 일반적으로 온라인 판매에 있어서는 네이버 및 다음 등 검색엔진 및 판매하는 마켓별로 CPC 또는 전시입찰 등의 광고를 집행을 통해 매출에 긍정적인 영향을 미친다고 알려졌으나, 최근에는 과다경쟁으로 인한 광고비의 집행비용의 인상율에 비해, 광고로 인한 판매율-구매전환율(ROAS)이 떨어짐을 확인되고 있어, 판매자들에게 혼란을 주고 있다. 매출 및 구매전환율을 늘리기 위한 효과적인 방법을 찾는 과정에서, 온라인 광고를 하면서도 그 외 요인들로 인해 경쟁사보다 판매량이 높은 상품들을 확인할 수 있었고, 소비자들에게 긍정적인 영향을 미치는 구매 단서를 통해 판매량에 긍정적 영향을 끼치는 것으로 보여, 연구를 하게 되었으며, 온라인 판매되는 상품들의 비교를 통해 가장 긍정적 영향을 미치는 요인을 확인하고자 한다. 또한, 수많은 상품들이 있는 온라인 시장에서 온라인 광고는 소비자들에게 자신의 상품이 노출되기 위한 필수불가결인 요소이나, 광고를 하면서도, 구매전환율(ROAS)을 높이기 위한 구매에 영향에 미치는 요인을 찾아, 온라인 판매 기업들의 효율을 높이기 위한 연구이다. 구매 전환율에 영향을 미치는 요인이 확인되었을 때, 해당 요인들에 집중하여, 결과적으로 판매량을 늘리고 매출을 높일 수 있을 것이다.

  • PDF

빅데이터 분석을 통한 기온 변화에 따른 상품의 판매량 분석 (Analysis of Sales Volume by Products According to Temperature Change Using Big Data Analysis)

  • 홍준기
    • 한국빅데이터학회지
    • /
    • 제4권2호
    • /
    • pp.85-91
    • /
    • 2019
  • 언제 어디서나 사용 가능한 스마트기기를 통한 온라인 쇼핑이 보편화되어 소비자들은 손쉽게 패션 관련 상품을 구입할 수 있다. 따라서 소비자들은 패션 관련 상품을 구매할 때 날씨, 판매 가격과 같은 다양한 환경 변수에 반응하여 상품을 구매한다. 따라서 효율적인 재고 관리를 위해 판매된 상품들의 빅데이터를 활용하는 것이 패션 산업에서 매우 중요하다. 본 논문에서는 국내 패션 회사 'A'의 실제 상품 판매 빅데이터를 활용하여 제안한 빅데이터 분석 알고리즘을 통해 기온 변화에 따른 패션 상품의 판매량 변화를 분석하였다. 분석 결과에 따르면, 제안한 빅데이터 분석 알고리즘을 통해 예상할 수 있는 판매량 결과와 예상하지 못한 판매량 결과를 얻었다.

  • PDF

다항식 모델을 이용한 음료 판매 데이터 분석 및 예측 (Beverage Sales Data Analysis and Prediction using Polynomial Models)

  • 이민구;박용국;정경권
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.701-704
    • /
    • 2014
  • 본 논문에서는 음료 판매 데이터 분석 및 판매량을 예측하는 방법을 제안하고자 하였다. 이를 위해 날씨와 음료 판매량이 상관관계가 있다고 가정하고, 온도, 습도를 입력으로 하여 판매량을 출력으로 하는 다항식 함수 관계를 모델링하였다. 본 논문에서는 제안한 방식의 유용성을 확인하기 위해 카페의 음료 판매 데이터를 2014년 2월부터 약 4개월 동안 수집하였고, 판매량 예측 알고리즘의 성능이 우수함을 확인하였다.

  • PDF

중국 내 자동차 산업 동향과 월별 판매량 시계열분석 (Analysis of Automobile Industry Trends and Demand Forecasting of Monthly Automobile Sales in Chin)

  • 왕첸양;이세원
    • 한국산업정보학회논문지
    • /
    • 제28권1호
    • /
    • pp.35-48
    • /
    • 2023
  • 본 연구에서는 급변하고 있는 세계 경제 환경 하에서 중국 자동차 산업의 발전 현황과 자동차 산업과 관련한 중국 정부의 정책을 살펴보고, 중국 내 소비자들의 자동차 구입에 대해 소비자 동향 조사를 실시하였다. 중국 정부의 강력한 국가 배출가스 규제정책과 내연기관 자동차 제조·판매 기준의 강화에도 불구하고 소비자들은 다양한 이유로 앞으로 자동차를 구매 시 내연기관차를 선택하겠다는 응답비율이 59.6%에 달하는 등 정부 정책과 소비자 인식 사이에는 적지 않은 차이가 존재하고 있음을 확인하였다. 또한, 최근의 중국 내 자동차 판매량의 감소 추세를 발견하여 2010년 1월부터 2020년 12월까지 월별 판매량을 학습용 데이터로, 2021년 1월부터 2022년 11월 동안의 판매량을 평가용으로 구분하여 향후 중국의 자동차 수요를 예측하는 시계열 모형들을 제안, 평가하였다. 그리고 각 시계열모형을 적용하였을 때의 2023년도의 월별 예측 판매량을 보였다.

빅데이터 분석을 통한 피자 판매량 예측 (Pizza Sales Prediction by Using Big Data Analysis.)

  • 이대범;김경섭;이영수;김하나한;변동삼;박성철;전화성;김준태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.890-893
    • /
    • 2014
  • IT산업의 새로운 패러다임으로 빅데이터 분석이 주요한 기술로 부각되고 있다. 본 논문에서는 빅데이터를 수집, 분석하여 이를 통해 피자 판매량을 예측하는 모델을 제안한다. 판매량 예측을 위하여 과거 판매 데이터와 함께 공휴일, 날씨, 뉴스기사, 경제지표, 트렌드, 스포츠 이벤트 등의 데이터를 수집하여 이용하였으며, 판매량 예측 방법으로는 회기분석과 인공신경망 학습 등을 사용하여 빅데이터를 사용하지 않은 경우와 정확도를 비교하였다. 실험 결과 빅데이터를 이용함으로써 예측 오차율이 5%이상 향상됨을 확인하였다.

시계열모형에 의한 전력판매량 예측 (Prediction of Electricity Sales by Time Series Modelling)

  • 손영숙
    • 응용통계연구
    • /
    • 제27권3호
    • /
    • pp.419-430
    • /
    • 2014
  • 전력수급의 정확한 예측은 국민들의 일상적 생활 유지, 산업활동, 그리고 국가경영을 위하여 매우 중요하다. 본 연구에서는 시계열모형화에 의해 전력판매량을 예측한다. 실제 자료분석을 통하여 입력시계열로서 냉난방도일과 개입변수로 펄스함수를 사용한 전이함수모형이 다른 시계열모형에 비해서 제곱근평균제곱오차 및 평균절대오차의 의미에서 더 우수하였다.