• Title/Summary/Keyword: 판두께

Search Result 654, Processing Time 0.03 seconds

Failure of RC Slabs Strengthened with CFRP Plate (탄소섬유판으로 보강한 철근콘크리트 슬래브의 파괴)

  • Kim, Joong-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.245-251
    • /
    • 1999
  • Carbon fibre reinforced plastic(CFRP) plate is one of the alternative materials for strengthening of reinforced and prestressed concrete members due to excellent strength and light weight. In this paper, the behavior of slabs strengthened with CFRP plate is observed and analyzed from the test results. Especially specimens with thick plate is tested when large moment and large shear force appear in same position. The failure mode is a peeling-off of the CFRP plate due to flexural-shear crack. This is observed near the loading points with thick plates. Because of this failure mode, thickness of CFRP plates does not influence on the failure loads. Depending on the loading pattern, it is necessary to consider different design criteria for reinforced concrete members with external reinforcement. When large moment and large shear force appear in same location, maximum thickness may limit to 0.6mm and ratio between moment of strengthened slab and moment of unstrengthened slab is proposed 1.5-2.0.

  • PDF

Practical Modeling for the Vibration Analysis of a Composite Deck Slab Structures (합성데크 바닥판 구조물의 진동해석을 위한 실용적인 모형화)

  • Kim, Jae-Yeol;Kim, Gee-Cheol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.43-50
    • /
    • 2005
  • Composite slab structures consisted with steel deck plate and concrete material show generally anisotropic structural behavior because of different stillness between the major direction and sub-direction of deck plate, and also the structures can be regarded as the laminated slab structures. It is necessary for the composite deck slab structures to carry out the exact vibration analysis to evaluate the serviceability. Also, it is needed to evaluate the exact structural behavior of composite deck slab with a layered orthotropic materials. In this paper, the thickness of lopping concrete and deck plate are used to calculate the material coefficient stiffness of a sub-direction, and an equivalent depth calculated from sectional stiffness of concrete and deck plate is applied to get the silliness of a major direction. The stiffness of two layered composite plates with different depth is determined by laminated theory. It is concluded that the presented method car efficiently analyze the structural behavior of composite deck slab consisted with steel deck plate and concrete material in the practical engineering field.

FE Analysis of Symmetric and Unsymmetric Laminated Plates by using 4-node Assumed Strain Plate Element based on Higher Order Shear Deformation Theory (고차전단변형이론에 기초한 4절점 가변형률 판 요소를 이용한 대칭 및 비대칭 적층 판의 유한요소해석)

  • Lee, Sang-Jin;Kim, Ha-Ryong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.95-100
    • /
    • 2008
  • A 4-node assumed strain finite element based on higher order shear deformation theory is developed to investigate the behaviours of symmetric and unsymmetric laminated composite plates. The present element is based on Reddy's higher order shear deformation theory so that it can consider the parabolic distribution of shear deformation through plate thickness direction. In particular, assumed strain method is adopted to alleviate the shear locking phenomena inherited plate elements based on higher order shear deformation theory. The present finite element has seven degrees of freedom per node and denoted as HSA4. Numerical examples are carried out for symmetric and unsymmetric laminated composite plate with various thickness values. Numerical results are compared with reference solutions produced by other higher order shear deformation theories.

  • PDF

3-D Free Vibration Analysis of Exponential and Power-law Functionally Graded Material(FGM) Plates (지수 및 멱 법칙 점진기능재료 판의 3차원 자유진동해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Ahn, Jin-Hee;Park, Weon-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.553-561
    • /
    • 2015
  • The exponential and power law functionally graded material(FGM) theory is reformulated considering the refined shear and normal deformation theory. This theory has ability to capture the both normal deformation effect and exponential and power law function in terms of the volume fraction of the constituents for material properties through the plate thickness. Navier's method has been used to solve the governing equations for all edges simply supported plates on Pasternak elastic foundation. Numerical solutions of vibration analysis of FGM plates are presented using this theory to illustrate the effects of power law index and 3-D theory of exponential and power law function on natural frequency. The relations between 3-D and 2-D higher-order shear deformation theory are discussed by numerical results. Further, effects of (i) power law index, (ii) side-to-thickness ratio, and (iii) elastic foundation parameter on nondimensional natural frequency are studied. To validate the present solutions, the reference solutions are discussed.

Nonlinear Analysis of Functionally Graded Materials Plates and Shells (점진기능재료(FGM) 판과 쉘의 비선형 해석)

  • Han, Sung-Cheon;Lee, Chang-Soo;Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.61-71
    • /
    • 2007
  • Navier's and Finite element solutions based on the first-order shear deformation theory are presented for the analysis of through-thickness functionally graded plates and shells. The functionally graded materials are considered: a sigmoid function is utilized for the mechanical properties through the thickness of the isotropic structure which varies smoothly through the plate and shell thickness. The formulation of a nonlinear 9-node Element-based Lagrangian shell element is presented for the geometrically nonlinear analysis. Natural-coordinate-based strains are used in present shell element. Numerical results of the linear and nonlinear analysis are presented to show the effect of the different top/bottom elastic modulus, loading conditions, aspect ratios and side-to-thickness ratios on the mechanical behaviors. Besides, the result according to the variation of the power-law index of isotropic functionally graded structures is investigated.

Condition Evaluation of Bare Concrete Bridge Decks (콘크리트 노출 교량 바닥판의 상태평가 기법)

  • Suh, Jin-Won;Rhee, JI-Young;Seo, Sang-Gil;Shin, Jae-In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.217-224
    • /
    • 2004
  • In 1980's, the concrete bridge decks were constructed with 4cm wearing surface layer instead of asphalt concrete overlays. After about 15 year service periods, deteriorations were appeared on the surfaces of highway bridge decks. Various field NDTs and lab tests were done to analysis the cause of the deterioration on the concrete deck surface. The main cause was the corrosion of rebars with thinner concrete top cover than the design value. The rebars with thinner concrete top cover was earlier corroded by penetrated chloride ions. If the appropriate top cover could be achieved, the bare concrete bridge decks can be used without earlier deteriorations.

Formulating the Local Displacement and Local Moments of a Plate Stiffened with Open Ribs According to the Dimensions of Stiffened Plates (보강판 제원에 따른 개단면 리브 보강판의 국부 처짐과 국부 모멘트의 정형화)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.659-670
    • /
    • 2012
  • The purpose of this study is to formulate the local displacement and moments of a plate stiffened with open ribs according to the dimensions of stiffened plates. Analyzed results of various plates stiffened with rectangular and reverse T ribs show that the effect of the lower flange to the local behavior is very small, so the local behavior can be expressed by ratio functions of the rib space, web thickness, web height and plate thickness and the ratio functions of rectangular and reverse T ribs can be unioned. The application of ratio functions to other types of stiffened plates shows that the increment of the error ratio is so small compared with examples of this study that the applicability of this study is proved.

Investigation of Impact Behavior by Thickness variation of Laminated Composite Subjected to Low-Velocity Impact (저속충격을 받는 복합적층판의 두께 변화에 따른 충격거동 조사)

  • Kwon, Suk-Jun;Jeon, Jin-Hyung;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.74-79
    • /
    • 2008
  • In this study, impact transient responses of (Graphite/Epoxy) laminated composite subjected to low-velocity impact are investigated using a finite element method. Dynamic von-Karman plate equations considering large deflection of plate are modified to include the effect of transverse shear deformations as in Mindlin plate theory and also the rotary inertia effect is considered. The convergence of transient responses is used contact law established through the statical indentation test. We investigate displacements, contact forces and strains by thickness variation of various laminated composite. We compare and analyze each results.

  • PDF

두꺼운 복합적층판의 기계적 체결 거동에 대한 유한요소 해석

  • 김유준;김형근;황태경;도영대
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.29-29
    • /
    • 1997
  • 각광 받는 구조재료인 섬유강화 복합적층재에 대한 기계적 체결 거동은 본질적인 재료의 이방성에 의해서 파단강도가 파단 모우드와 매우 밀접한 관련을 갖는 것으로 알려져 있다. 따라서, 복합적층판 체결부의 정밀 구조 설계에서는 단순화에 따른 오차를 줄이고 정밀해에 의한 설계 및 해석이 요청된다. 특히, 층간응력 성분을 무시할 수 없는 두께를 갖는 복합적층 판의 기계적 체결부 해석이나 실제 구조물의 체결부에서 발생하는 굽힘이나 비틀림과 같은 하중 상태를 묘사하기 위해서도 정밀한 3차원 응력 해석은 필요하다. 하지만, 지금까지 기계적 체결부의 거동에 관한 연구는 층간응력 성분들을 어느정도 무시할 수 있는 얇은 평판에 대한 2차원 응력해석에 주로 국한되어 왔으며, 일부 수행된 체결부에 대한 3차원 응력 해석의 경우 여러 단점을 갖는 3차원 연속체 요소에 의한 유한요소 해석이 수행되었을 뿐이다.본 연구는 층간응력 성분들을 무시할 수 없는 두께를 갖는 복합적층판의 기계적 체결부 해석에 지금까지 사용되어온 3차원 연속체 요소에 의한 유한요소 방법이 갖는 단점들을 개선한 Layerwise 유한요소법을 이용하여 3차원 응력해석을 수행하였다. 특히, 선형상보성원리에 근거한 최적설계 기법을 응용하여, 기계적 체결시 핀과 적층판의 홀 사이에 발생하는 하중 전달 과정을 모사하고, 접촉력에 의한 홀 주위의 복잡하고 국부적인 응력 집중현상을 규명하여본다.

  • PDF

A Study on the Friction Characteristics of Vulcanized Natural Rubber Plate (가황된 천연고무 판재의 마찰특성에 관한 연구)

  • Kim, D.J.;Nah, C.;Lee, Y.S.;Kim, W.D.
    • Elastomers and Composites
    • /
    • v.36 no.2
    • /
    • pp.121-129
    • /
    • 2001
  • The friction characteristics of natural rubber plates under various conditions including sliding speed, normal force, hardness, lubrication conditions and thickness of plate are analyzed experimentally. The frictional force and normal force are measured by a tester pin and a load ceil with strain gages. Experimental results suggest that the coefficient of friction decreases with increasing the hardness of rubber and decreasing the thickness of plate. The effect of sliding speed is not significant over the speed range employed. The coefficient of friction is found to be about 0.1 under oil lubrication condition and varies from 0.9 to 3.9 under no lubrication condition.

  • PDF