Nonlinear Analysis of Functionally Graded Materials Plates and Shells

점진기능재료(FGM) 판과 쉘의 비선형 해석

  • 한성천 (대원과학대학 토목과) ;
  • 이창수 (서울시립대학교 토목공학과) ;
  • 김기동 (공주대학교 건설환경공학부) ;
  • 박원태 (공주대학교 건설환경공학부)
  • Published : 2007.12.31

Abstract

Navier's and Finite element solutions based on the first-order shear deformation theory are presented for the analysis of through-thickness functionally graded plates and shells. The functionally graded materials are considered: a sigmoid function is utilized for the mechanical properties through the thickness of the isotropic structure which varies smoothly through the plate and shell thickness. The formulation of a nonlinear 9-node Element-based Lagrangian shell element is presented for the geometrically nonlinear analysis. Natural-coordinate-based strains are used in present shell element. Numerical results of the linear and nonlinear analysis are presented to show the effect of the different top/bottom elastic modulus, loading conditions, aspect ratios and side-to-thickness ratios on the mechanical behaviors. Besides, the result according to the variation of the power-law index of isotropic functionally graded structures is investigated.

Navier 해 및 유한요소 해를 두께 방향으로 재료의 성질이 변하는 점진기능재료 판 및 쉘의 해석을 위해 제시하였다. 판과 쉘의 두께를 따라 완만하게 변하는 등방성 구조물의 두께방향에 따른 역학적 특성을 고려하기 위하여 S 형상 함수를 적용한 점진기능재료를 고려하였다. 비선형 9 절점 요소기저 Lagrangian 쉘 요소의 정식화를 기하학적 비선형 해석을 위해 제시하였다. 자연 좌표계에 의한 변형률이 본 연구의 쉘요소에 사용된다. 1차 전단변형이론에 의한 수치 해석 예제로 상면과 하면의 탄성 계수의 변화, 하중조건, 형상 비 그리고 폭-두께 비에 따른 역학적 거동을 연구하였다. 또한 거듭제곱 매개 변수의 변화에 따른 점진기능재료 구조물의 결과들을 조사하였다.

Keywords

References

  1. 한성천, 최삼열 (2004) 가정 변형율 9절점 쉘 요소에 의한 적층 복합 판 및 쉘의 기하학적 비선형 해석. 대한토목학회논문집, 제 24권, 제4-A호, pp. 769-778
  2. 한성천, 최삼열 (2006) 면내 압축 및 전단을 받는 적층 복합 보강판의 자유진동해석. 대한토목학회논문집, 제26권, 제1-A, pp. 191-203
  3. Bao, G. and Wang, L. (1995) Multiple Cracking in Functionally Graded Ceramic/metal Coatings. Internstionel Journal of Solids and Structures, Vol. 32, pp. 2853-2871 https://doi.org/10.1016/0020-7683(94)00267-Z
  4. Cheng, Z. Q. and Batra, R. C. (2000) Deflection Relationships Between the Homogeneous Kirchhoff Plate Theory and Different Functionally Graded Plate Theories. Archive of Mechsnics, Vol. 52, pp. 143-158
  5. Chi, S. H. and Chung, Y. L. (2006a) Mechanical Behavior of Functionally Graded Material Plates under Transverse Load-Part I: Analysis. Internstionsi Journal of Solids and Structures, Vol. 43, No. 13, pp. 3657-3674 https://doi.org/10.1016/j.ijsolstr.2005.04.011
  6. Chi, S. H. and Chung, Y. L. (2006b) Mechanical Behavior of Functionally Graded Material Plates under Transverse Load-Part II: Numerical results. Internstionsl Journal of Solids and Structures, Vol. 43, No. 13, pp. 3675-3691 https://doi.org/10.1016/j.ijsolstr.2005.04.010
  7. Chung, Y. L. and Chi, S. H. (2001) The Residual Stress of Functionally Graded Materials. J Chinese Institute of Civil and Hydraulic Engineering, Vol. 13, pp. 1-9
  8. Crisfield, M. A. (1981) A Fast Incremental/ iterative Solution Procedure that Handles Snap-through, Computers and Structures, Vol. 13, pp. 55-62 https://doi.org/10.1016/0045-7949(81)90108-5
  9. Delale, F. and Erdogan, F. (1983) The Crack Problem for a Nonhomogeneous Plane. Journal of Applied Mechanics ASME, Vol. 50, pp. 609-614 https://doi.org/10.1115/1.3167098
  10. Erdogan, F. and Chen, Y. F. (1998) Interfacial Cracking of FGM/metal Bonds. Ceramic Coating. Edited by Kokini K
  11. Han, S. C., Choi, S. and Park, W. T. (2007) The Effect of Varying the In-plane Loads and Stacking Sequence on the Vibration Analysis of Composite Stiffened Plates. Science and Engineering of Composite Materials, in print
  12. Han, S. C., Kim, K D. and Kanok -Nukulchai, W. (2004) An Element-based 9-node Resultant Shell Element for Large Deformation Analysis of Laminated Composite Plates and Shells. Structural Engineering and Mechanics, Vol. 18, No.6, pp. 807 -829 https://doi.org/10.12989/sem.2004.18.6.807
  13. Han, S. C., Lee, S. Y. and Rus, G. (2006) Postbuckling Analysis of Laminated Composite Plates subjected to the Combination of the In-plane Shear, Compression and Lateral Loading. International Journal of Solids and Structures, Vol. 43, No. 18-19, pp. 5713-5735
  14. Jin, Z. H. and Paulino, G. H. (2001) Transient Thermal Stress Analysis of an Edge Crack in a Functionally Graded Material. International Journal of Fracture, Vol. 107, pp. 73-98 https://doi.org/10.1023/A:1026583903046
  15. Kanok-Nukulchai, W. (1989) A Powerful General Purposed Nonlinear Finite Element Package adopting Automatic Arc-length Control Algorithm. Asian-Padfic Structural Analysis Conference, Melacca, Malaysia, Session IV-1-1
  16. Kanok - Nukulchai, W. and Wong, W. K (1988) Element-based Lagrangian Formulation for Large-Deformation Analysis. Computers and Structures, Vol. 30, pp, 967-974 https://doi.org/10.1016/0045-7949(88)90136-8
  17. Kebari, H. and Cassel, A. C. (1992) A Stabilized 9-node Non-linear Shell Element. International Journal for Numerical Methods in Engineering, Vol. 35, pp. 37-61 https://doi.org/10.1002/nme.1620350104
  18. Kim, K D., Lee, C. S. and Han, S. C. (2007) A 4-node Co-rotational ANS Shell Element forLaminated Composite Structures. Composite Structures,Vol. 80, No.2, pp. 234-252 https://doi.org/10.1016/j.compstruct.2006.05.003
  19. Loy, C. T., Lam, K Y. and Reddy, J. N. (1999) Vibration of Functionally Graded Cylindrical Shells. International Journal of Mechanical Sciences, Vol. 41, pp, 309-324 https://doi.org/10.1016/S0020-7403(98)00054-X
  20. Ma, H. and Kanok-Nukulchai, W. (1989) On the Application of Assumed Strained Methods. Structural Engineering and Construction, Achievements, Trends and Challenges, Kanok-Nukulchai et al. (eds.) , AIT, Bankok
  21. Reddy, J. N. (1997) Mechanics of composite plates. CRC press, New York
  22. Reddy, J. N. (2000) Analysis of Functionally Graded Plates. International Journal for Numerical Methods in Engineering, Vol. 58, pp, 2177-2200 https://doi.org/10.1002/nme.854