• Title/Summary/Keyword: 판넬 기여도

Search Result 56, Processing Time 0.025 seconds

Experimental Study of a Seismic Reinforcing System without Power Interruption and Movement for Electric Panel on the Access Floor (무정전-무이설 방식의 전기판넬 내진보강시스템 시험연구)

  • Jang, Jung-Bum;Lee, Jong-Rim;Hwang, Kyeong-Min;Ham, Kyung-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.1-10
    • /
    • 2009
  • The seismic reinforcing system is developed to prevent damage to electric panels which are installed on the access floor and are essential to the operation of various basic facilities such as electric power and communication etc., from earthquakes. The seismic capacity of seismic reinforcing system is verified through the shaking table test. The seismic reinforcing system is intended for the electric panel on the access floor, and installation is possible without movement and power interruption of the electric panel. The enveloped response spectrum is adopted considering the location of the electric panel in the building as input motion for the shaking table test. The shaking table tests are carried out with two electric panels that can be considered representative of general electric panels, and two types of access floors such as wood panel and steel panel, which are commonly used in the industrial field. As a result of tests, it is confirmed that the seismic reinforcing system secures the seismic safety of electric panels by preventing the overturning of electric panels during and after the shaking table tests. In the event that the seismic reinforcing system is applied to the electric panel on the access floor, damage to the electric panel from an earthquake can be effectively prevented, which can greatly contribute to the stable operation of domestic basic facilities.

Analysis of a Panel Contribution of a Vehicle Compartment Using the Acoustic Reciprocal Theorem (음향 상호성 이론을 이용한 승용차 차실 판넬의 기여도 해석)

  • Kim, M.G.;Park, T.W.;Lee, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.59-72
    • /
    • 1994
  • For a panel contribution of the passenger vehicle compartment, a model was created for acoustic analysis of the passenger vehicle compartment and through the acoustic normal modal analysis, frequencies and mode shapes of the resonance modes were calculated. Also, the contribution analysis of each panel was executed using acoustic reciprocal theorem, and through this analysis, normalized responses at the particular point indicate the relative contribution of each panel for generating noise and vibration

  • PDF

An Experimental Analysis of the Contributions to the Radiated Noise due to Panel Vibration of a Rotational Machine (회전체 진동으로 인한 판넬 방사소음의 실험적 기여도 분석)

  • 국형석;허승진;고강호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.126-131
    • /
    • 2003
  • This study is concerned with the reduction of noise radiation by an industrial fan unit. First, spectral decomposition method is used to decompose the spectrogram obtained in experiments into source function and noise transfer function, and then major noise generation sources are investigated. Among the noise sources involved in the fan unit. this article is focused on the noise source due to vibration of panels of the unit housing. It is shown here that noise radiation associated with the panel vibration can be as significant in some frequency ranges as that associated with other noise sources such as aeroacoustic fan noise.

A Integrated Circuit Design of DC-DC Converter for Flat Panel Display (플랫 판넬표시장치용 DC-DC 컨버터 집적회로의 설계)

  • Lee, Jun-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.231-238
    • /
    • 2013
  • This paper describes a DC-DC converter IC for Flat Panel Displays. In case of operate LCD devices various type of DC supply voltage is needed. This device can convert DC voltage from 6~14[V] single supply to -5[V], 15[V], 23[V], and 3.3[V] DC supplies. In order to meet current and voltage specification considered different type of DC-DC converter circuits. In this work a negative charge pump DC-DC converter(-5V), a positive charge pump DC-DC converter(15V), a switching Type Boost DC-DC converter(23V) and a buck DC-DC converter(3.3V). And a oscillator, a thermal shut down circuit, level shift circuits, a bandgap reference circuits are designed. This device has been designed in a 0.35[${\mu}m$] triple-well, double poly, double metal 30[V] CMOS process. The designed circuit is simulated and this one chip product could be applicable for flat panel displays.

An Experimental Analysis of the Contributions to the Radiated Noise due to Panel Vibration in a Fan Unit (공조기기 판넬 진동으로 인한 방사소음의 실험적 기여도 분석)

  • Kook, Hyung-Seok;Huh, Seung-Jin;Ko, Kang-Ho;Lee, Jae-Hyung;Hong, Seok-In;Kim, Jin-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.192-197
    • /
    • 2001
  • This study is concerned with the reduction of noise radiation by an industrial fan unit. Among the noise sources involved in the fan unit, this article is focused on the noise source due to vibration of panels of the unit housing. It is shown here that noise radiation associated with the panel vibration can be as significant in some frequency ranges as that associated with other noise sources such as aeroacoustic fan noise.

  • PDF

An Experimental Study on Radiation/Convection Hybrid Air-Conditioner (복사-대류 겸용 하이브리드 냉방기에 대한 실험 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.288-296
    • /
    • 2019
  • Radiation cooling has used ceilings or floors as cooling surfaces. In such cases, to avoid moisture condensation on the surface, the surface temperature needs be higher than the dew point temperature or an additional dehumidifier is added. In this study, with a goal for residential application, intentional moisture condensation on the cooling surface was attempted, which increased the cooling capacity and improved the indoor comfortness. This method included two separate refrigeration cycles - convection-type dehumidifying cycle and the panel cooling cycle. Test results on the panel cooling cycle showed that, at the standard outdoor ($35^{\circ}C/24^{\circ}C$) and indoor ($27^{\circ}C/19.5^{\circ}C$) condition, the refrigerant flow rate was 8.8 kg/h, condensation temperature was $51^{\circ}C$, evaporation temperature was $8.8^{\circ}C$, cooling capacity was 376 W and COP was 1.75. Furthermore, the panel temperature was uniform within $1^{\circ}C$ (between $13^{\circ}C$ and $14^{\circ}C$). As the relative humidity decreased, the cooling capacity decreased. However, the power consumption remained approximately constant. In the convection-type dehumidification cycle, the refrigerant flow rate was 21.1 kg/h, condensation temperature was $61^{\circ}C$, evaporation temperature was $5.0^{\circ}C$, cooling capacity was 949 W and COP was 2.11 at the standard air condition. When both the radiation panel cooling and the dehumidification cycle operated simultaneously, the cooling capacity of the radiation panel cycle was 333 W and that of the dehumidification cycle was 894 W, and the COP was 1.89. As the fan flow rate decreased, both the cooling capacity of the radiation panel and the dehumidification cycle decreased, with that of the dehumidification cycle decreasing at a higher rate. Finally, a possible control logic depending on the change of the cooling load was proposed based on the results of the present study.

A Design Process for Structural Borne Noise using Panel Contribution and Design Sensitivity (판넬기여도와 설계민감도를 이용한 구조기인소음 설계프로세스)

  • Kim, Hyo-Sig;Kim, Heon-Hee;Cho, Hyo-Jin;Yoon, Seong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.806-811
    • /
    • 2007
  • In this study, we propose a more systematic design process for the structure-borne noise. The proposed way consists of 4 steps: Problem definition, Cause analysis, Development of counter-measure and Validation. Especially, we improved the second step: Cause analysis. According to the PCA(Panel Contribution Analysis), a reduction in vibration of the panels of which panel contribution is positive and larger, results in a reduction in structure-borne noise. We have, however, met the case in which the concept of PCA is no valid in a few vehicle tests. In order to understand this phenomenon, we compared the major panels selected by PCA with the one chosen by DSA(Design Sensitivity Analysis). After investigating the difference between the two results, a more improved process is suggested. The proposed one for the second step in the design process consists of not only the previous way: PCA with deformation analysis results but also DSA. It is finally validated that the proposed design process decreases the sound pressure of the concerned noise transfer function more than 3.5 dB.

  • PDF

CFD Analysis to Suppress Condensate Water Generated in Gas Sampling System of HANARO (하나로 기체시료채취계통에서 생성된 응축수 억제를 위한 CFD 해석)

  • Cho, SungHwan;Lee, JongHyeon;Kim, DaeYoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.327-336
    • /
    • 2020
  • The high-flux advanced neutron application reactor (HANARO) is a research reactor with thermal power of 30 MW applied in various research and development using neutrons generated from uranium fission chain reaction. A degasifier tank is installed in the ancillary facility of HANARO. This facility generates gas pollutants produced owing to internal environmental factors. The degasifier tank is designed to maintain the gas contaminants below acceptable levels and is monitored using an analyzer in the gas sampling panel. If condensate water is generated and flows into the analyzer of the gas sampling panel, corrosion occurs inside the analyzer's measurement chamber, which causes failure. Condensate water is generated because of the temperature difference between the degasifier tank and analyzer when the gas flows into the analyzer. A heating system is installed between the degasifier tank and gas sampling panel to suppress condensate water generation and effectively remove the condensate water inside the system. In this study, we investigated the efficiency of the heating system. In addition, the variations in the pipe temperature and the amount of average condensate water were modeled using a wall condensation model based on the changes in the fluid inlet temperature, outside air temperature, and heating cable-setting temperature.