• Title/Summary/Keyword: 파 반사율

Search Result 180, Processing Time 0.03 seconds

A Quasi-nonlinear Numerical Analysis Considering the Variable Membrane Tension of Vertical Membrane Breakwaters (연직 막체방파제의 변동 막체장력을 고려한 준 비선형 수치해석)

  • Chun, In-Suk;Kim, Sun-Sin;Park, Hyun-Ju
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.290-300
    • /
    • 2009
  • The existing numerical methods on the vertical membrane breakwater have employed a linear analysis where the variable membrane tension occurring during membrane motions is assumed to be very negligible compared to the initial tension. In the present study, a quasi-nonlinear analysis is attempted such that the temporary tension of the membrane is substituted by the average tension for a wave period that is sought by an iterative calculation. The results showed that with the increase of the wave period the reflection coefficients appeared larger and the transmission coefficients smaller compared to the results of the linear analysis. The application of the quasi-nonlinear analysis also showed that the performance of the structure is closely dependent on the horizontal deformation of the membrane. In order to suppress the horizontal deformation, it may be required to take the larger initial tension of the membrane or to put additional mooring lines in the middle of the vertical faces of the membrane. But for theses methods to be effective, a largely sized surface float should be installed to secure enough buoyancy to support such downward forces.

Neural Relighting using Specular Highlight Map (반사 하이라이트 맵을 이용한 뉴럴 재조명)

  • Lee, Yeonkyeong;Go, Hyunsung;Lee, Jinwoo;Kim, Junho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.87-97
    • /
    • 2020
  • In this paper, we propose a novel neural relighting that infers a relighted rendering image based on the user-guided specular highlight map. The proposed network utilizes a pre-trained neural renderer as a backbone network learned from the rendered image of a 3D scene with various lighting conditions. We jointly optimize a 3D light position and its associated relighted image by back-propagation, so that the difference between the base image and the relighted image is similar to the user-guided specular highlight map. The proposed method has the advantage of being able to explicitly infer the 3D lighting position, while providing the artists' preferred 2D screen-space interface. The performance of the proposed network was measured under the conditions that can establish ground truths, and the average error rate of light position estimations is 0.11, with the normalized 3D scene size.

The Wave Diffraction in a Partial-Reflecting Harbor due to Submarine Pit (Pit에 의한 부분반사율을 갖는 항내에서의 파랑 회절에 관한 연구)

  • Kim, Sung-Duk;Lee, Hong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.502-510
    • /
    • 2007
  • The present study is to estimate the effect of diffracted wave fields inside a harbor, around harbor entrance and outer breakwater, when a navigation channel is dredged in the vicinity of the a harbor entrance. The wave field of the problem is considered to be two-dimensional plane and the configuration of the submarine pit on the sea bed is designated by a single rectangular type. The numerical simulation is performed by using the solution of the Greet function based on the boundary integral equation. The results of this study is illustrated by applying the normal incidence and partially reflecting boundaries.

Analysis of Radiation Characteristics on Offset Gregorian Antenna Using Jacobi-Bessel Series (Jacobi-Bessel 급수를 이용한 옵셋 그레고리안 안테나의 복사특성 해석)

  • Ryu, Hwang
    • The Journal of Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.5-14
    • /
    • 1997
  • The purpose of thesis is to analyze the radiation characteristics of an offset gregorian antenna in order to design the satellite-loaded antenna. In order to compute the radiation pattern of the sub-reflector, the reflected wave is obtained by GO(Geometric Optics) at an arbitrary shaped sub-reflector. Then the total radiation EM wave is obtained by summing the diffracted fields obtained by UTD(Uniform Geometrical Theory of Diffraction) and the GO fields. In order to calculate the far field radiation pattern of the main reflector, the radiation integral equation is derived from the induced current density on reflector surface using PO(Physical Optics). The kernel is expanded in terms of Jacobi-Bessel series for increasing the computational efficiency, then the modified radiation integral is represented as the double integral equation independent of observation points. When the incident fields are assumed to be x-or y-polarized field, the characteristics of radiation patterns in the gregorian antenna is analyzed in case of the main reflector having the focal length of 62.4$\lambda$, diameter of 100$\lambda$, and offset height of 75$\lambda$, and the sub-reflector having the eccentricity of 0.501, the inter focal length og 32.8$\lambda$, the horn axis angle of $9^{\circ}$ and the half aperture angle of $15.89^{\circ}$. The cross-polarized level and side lobe level in the offset geogorian reflector are reduced by 30dB and 10dB, respectively, in comparison with those of the offset parabolic antenna.

  • PDF

Characteristic Changes in Ground-Penetrating Radar Responses from Dielectric-Filled Nonmetallic Pipes Buried in Inhomogeneous Ground (비균일 지하에 묻혀있는 유전체 충진 비금속관에 의한 지표투과레이다 응답의 특성 변화)

  • Hyun, Seung-Yeup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.399-406
    • /
    • 2019
  • The variation of ground-penetrating radar(GPR) signal characteristics from dielectric-filled nonmetallic pipes buried in inhomogeneous ground are compared through a numerical simulation. The relative permittivity distribution of the ground is generated by using the continuous random media(CRM) technique. As a function of the relative permittivity of the material filling the nonmetallic pipe buried in the ground media, GPR signals are simulated by using the finite-difference time-domain(FDTD) method. We show that, unlike the case for homogeneous ground, the distortion characteristics of the reflected waves caused by the front convex surface and the rear concave surface of the pipe buried in inhomogeneous ground are different depending on the permittivity contrast between the inside and outside of the pipe.

가스절연개폐장치에 있어서 급준과도진동파 전압의 발생과 절연특성

  • 하촌달웅;이복희
    • 전기의세계
    • /
    • v.38 no.1
    • /
    • pp.21-30
    • /
    • 1989
  • 가스 절연개폐장치(GIS)에 있어서 단로기 또는 차단기의 개폐조작시나 자락고장이 생겼을 때는 급준과도전압(VFT)가 발생한다. 이 급준파의 크기는 단로기의 개폐조작시 재점호가 일어날 때가 대지절연파괴를 일으킬때의 극간전압차에 의하여 결정되며, 반사와 전반에 의해 중첩된 진행파로 되는 이른바 급준과도과전압(VFTO)로 된다. 이 VFT의 상승율은 표준뢰임펄스전압보다 크며, 최초의 파두장은 4-7[ns]의 것도 있다. 또 이 VFT전압은 GIS내부 뿐만 아니라 가공 송전선과 대지간, GIS의 용기와 대지사이 등 외부에도 나타난다. 따라서 GIS의 내부와 외부에서 VFT의 스트레스가 나타나므로 GIS의 설계시에 충분히 고려하여야만 된다. 지락고장에 의해 발생되는 용기과도전압(TEV)도 불꽃방전시에는 인가전압의 2배 정도로 되는 경우도 있으므로 절연설계 및 현장시험시에 고려할 필요가 있다. 단로기의 개폐조작시 발생하는 VFT의 피이크치를 최악의 경우로 상정할 때는 절연레벨을 상당히 저하시키며, 특히 GIS내에 돌기물과 같은 이물질이 존재하여 불평등전계를 형성할 때는 절연파괴전압이 대단히 전하된다. 변압기나 부싱 등과 같은 전력기기에서는 외함과 접지사이의 전압을 제한하여 설계할 필요가 있으며 용기와 대지사이의 외부과도과전압(FTO)를 저감시키기 위해서는 GIS의 외함을 각각 분할하여 제작할 필요가 있다.

  • PDF

A New Design Method of Rubble Mound Structures with Stability and Wave Control Consideration (안정성(安定性)과 파랑제어기능(波浪制御機能)을 고려(考慮)한 사석구조물(捨石構造物)의 새로운 설계법(設計法))

  • Ryu, Cheong Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.155-164
    • /
    • 1987
  • A new design method of rubble mound structures that includes the considerations of stability and wave control is proposed. Using the method, design of structures that reduce the wave reflection and run-up and increase the rubble stability is assured under the given wave conditions. The new design formula is developed so that the allowable prcentage of damage and the wave grouping effects on rubble stability are also considered in design. For this a new definition of the mean run-sum is made. Finally, the new method is applied for the design of uniform and composite slope rubble mound structures and the significant advantages are found.

  • PDF

3-D Seismic Profiling (3차원 탄성파탐사)

  • Shon, Howoong
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.739-744
    • /
    • 1996
  • 'Kite' is a newly developed single-channel seismic imaging system capable of producing high resolution three dimensional images of subbottom geology in one traverse of a survey region. The system consists of a horizontally towed hydrophone array and active source. The hydrophone array is towed axis perpendicular to ship direction and the airgun source at the end of the hydrophone array is excited at timed intervals during the progression. The construction of the three dimensional subbottom image was made simply by using conventional multichannel seismic reflection data processing techniques. Common source shot (CSS) gathers of the hydrophone traces are evaluated using Dix's equation for average interval velocity of each subbottom layer. From the interval velocity profile and the normal consolidation stress condition, values of shear modulus, porosity, and shear velocity are deduced from the chosen values of physical constants. The system has been successfully tested at several locations on the North Atlantic continental shelf.

  • PDF

Wave Control by Bottom-Mounted and Fluid-Filled Flexible Membrane Structure (유체가 채워진 착저신 유연막 구조물에 의한 파랑제어)

  • 조일형;강창익
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.139-148
    • /
    • 2000
  • In this paper, the interaction of oblique incident waves with a bottom-mounted and fluid-filled flexible membrane structure is investigated in the frame of linear hydro-elastic theory. The static shape of a membrane structure containing the fluid of a specific density is initially unknown and must be calculated before the hydrodynamic analysis. To solve hydrodynamic problem, the fluid domain is divided into the inner and outer region. The inner solution based on discrete membrane dynamic model and simple-source distribution over the entire fluid boundaries is matched to the outer solution ba~ed on an eigenfunction expansion method. The numerical results were compared to a series of Ohyama's experimental results. The measured reflection and tran¬smission coefficients reasonably follow the trend of predicted values. Using the computer program developed, the performance of a bottom-mounted and fluid-filled flexible membrane strocture is tested with various system parameters (membrane shape, internal pressure, density ratio) and wave characteristics (wave frequencies, incident wave angle). It is found that a bottom-mounted and fluid-filled flexible membrane structure can be an effel;tive wave barrier if properly designed.

  • PDF

Control of Short-period and Solitary Waves Using Two-rowed Impermeable Rectangular Submerged Dike (2열 불투과성 사각형 잠제를 이용한 단주기파랑 및 고립파의 제어)

  • Lee, Kwang-Ho;Jung, Sung-Ho;Ha, Sun-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.203-214
    • /
    • 2010
  • This study numerically investigates the wave control of 2-rowed Impermeable Rectangular Submerged Dike(IRSD) with an object of how to control short-period and solitary waves simultaneously based on the Bragg resonance phenomenon that elevates the wave control performance. The boundary integral method using Green formula and the 3-D one-field Model for immiscible TWO-Phase flows (TWOPM-3D) by 3-D numerical wave flume have been used for the numerical predictions for short-period and solitary waves, respectively. These numerical models were verified through the comparisons with the previously published numerical results by other researchers. Through the parametric tests of numerical experiments for short-period waves, an optimum model of 2-rowed IRSD of a lowest transmission coefficient has been found. Furthermore, the performances of 3-D wave control for solitary waves were evaluated for the various free board, crown widths and gap distance between dikes, and have been compared with those of a single-rowed IRSD. Numerical results show that a 2-rowed IRSD with a less cross sectional area than 1-rowed one improves the wave attenuation performances when it is compared to that of single-rowed IRSD. Within the test frequency ranges of the numerical simulations conducted in this study, 2-rowed IRSD with an optimum gap distance shows an outstanding improvement of the wave attenuation up to 58% compared to that of single-rowed IRSD.