References
- 국립방재연구소 (1998). 동해안에서의 쯔나미 위험도 평가. 국립방재연구소, 연구보고서, NIDP-98-06.
- 김도삼 (2000). 다열 잠제에 의한 파랑의 전달율과 반사율. 대한토목학회논문집, 제 20권, 제 I-B호, pp. 85-94.
- 김도삼, 김지민, 이광호 (2007a). 동해연안에 영향을 미친 지진해일의 수치시뮬레이션, 한국해양공학회지, 제 21권, 제 6호, pp. 72-80.
- 김도삼, 김지민, 이광호, 손병규 (2007b). 일본 지진공백역에서의 지진해일이 우리나라의 남동연안에 미치는 영향분석. 한국해양공학회지, 제 21권, 제 6호, pp. 64-71.
- 김도삼, 이광호, 허동수, 김정수 (2001). VOF법에 기초한 불투과 잠제 주변파동장의 수치해석. 대한토목학회논문집, 제 21권, 제 5-B호, pp. 551-560.
- 김도삼, 정성호, 이봉재, 김인철 (2000). 경사입사파동장중의 수중다열잠제에 의한 Bragg반사. 대한토목학회논문집, 제 20권 제 5-B호, pp. 737-745.
- 윤덕영, 허동수, 김도삼, 강주복 (1995). 장주기파의 효율적인 제어를 위한 이열잠제의 최적간격. 한국항만학회지, 제 9권, 제 2호, pp. 51-64.
- 이광호, 김창훈, 정성호, 김도삼 (2008a). 고립파(지진해일) 작용하의 수중방파제에 의한 파랑제어. 대한토목학회논문집, 제 28권 제 3B호, pp. 323-334.
- 이광호, 이상기, 신동훈, 김도삼 (2008b). 복수연직주상구조물에 작용하는 비선형파력과 구조물에 의한 비선형파랑변형의 3차원해석, 한국해안.해양공학회논문집, 제 20권, 제 1호, pp. 1-13.
- 이광호, 김도삼, Harry, Y. (2008c). 단파의 전파에 따른 수위 및 유속변화의 특성에 관한 연구, 대한토목학회논문집, 제 28권 제 5B호, pp. 575-589.
- 허동수, 김도삼 (2003). VOF법에 의한 불규칙파동장에 있어서 불투과잠제에 의한 파랑에너지의 변형특성. 한국해안.해양공학회지, 제 15권, 제 4호, pp. 207-213.
- Amsden, A.A. and Harlow, F.H. (1970). The SMAC method: a numerical technique for calculating incompressible fluid flow. Los Alamos Scientific Laboratory Report LA-4370, Los Alaomos, N.M..
- Brorsen, M. and Larsen, J. (1987). Source generation of nonlinear gravity waves with boundary integral equation method. Coastal Engrg., Vol. 11, pp. 93-113. https://doi.org/10.1016/0378-3839(87)90001-9
- Chang, K.A., Hsu, T.J. and Liu, P.L.-F. (2001). Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle : Part I. solitary waves. Coastal Engrg., Vol. 44, pp. 13-26. https://doi.org/10.1016/S0378-3839(01)00019-9
- Cho, Y.S. and Lee, H.J. (2002). Numerical simulations of 1983 central East Sea tsunami at Imwon: 1. Propagation across the east sea. J. of Korea Water Resources Association, Vol. 34, No. 4, pp. 427-436.
- Cho, Y.S., Lee, J.I., Lee, J.K. and Yoon, T.H. (1995). Bragg reflection of shallow-water waves. J. of Korean Society of Civil Engineers, Vol. 15, No. 6, pp. 1823-1832.
- Dean, R.G. and Dalrymple, R.A. (1991). Water wave mechanics for engineers and scientists. World Scientisfic.
- Dong, C.M. and Huang, C.J. (1999). Vortex generation in water waves propagating over a submerged rectangular dike. Proc. 9th Intl. Offshore and Polar Engrg. Conf., Vol. III, pp. 388-395.
- Fenton. J. (1972). A ninth-order solution for the solitary wave: Part 2. J. of Fluid Mech., Vol. 53, pp. 257-271. https://doi.org/10.1017/S002211207200014X
- Goring, D.G. and Raichlen, F. (1990). Propagation of long waves onto shelf. J. of Waterway, Port, Coastal, and Ocean Engrg, ASCE, Vol. 118, pp. 43-61.
- Grimshaw, R. (1971). The solitary wave in water of variable depth: Part 2. J. of Fluid Mech., Vol. 46, pp. 611-622. https://doi.org/10.1017/S0022112071000739
- Hinatsu, M. (1992). Numerical simulation of unsteady viscous nonlinear waves using moving grid system fitted on a free surface. J. of Kansai Soc. Nav. Archit. Japan, No. 217, pp. 1-11.
- Hirt, C.W and Nichols, B.D. (1981). Volume of fluid(VOF) method for the dynamics of free boundaries. J. of Comput. Phys., Vol. 287, pp. 299-316.
- Huang, C.J., Chang, H.H. and Hwun, H.H. (2003). Structural permeability effects on the interaction of a solitary wave and a submerged breakwater. Coastal Engrg., Vol. 49, pp. 1-24. https://doi.org/10.1016/S0378-3839(03)00034-6
- Huang, C.J. and Dong, C.M. (1999). Wave deformation and vortex generation in water waves propagating over a submerged dike. Coastal Engrg., Vol. 37, pp. 123-148. https://doi.org/10.1016/S0378-3839(99)00017-4
- Huang, C.J. and Dong, C.M. (2001). On the interaction of a solitary wave and a submerged dike. Coastal Engrg., Vol. 43, pp. 265- 286. https://doi.org/10.1016/S0378-3839(01)00017-5
- Kioka, W., Matsuno, T. and Minagawa, H. (1989). Scattering of surface waves by parallel submerged breakwaters. Proc. Coastal Engrg., JSCE, Vol. 36, pp. 549-553. https://doi.org/10.2208/proce1989.36.549
- Kirby, J.T. and Dalrymple, R.A. (1983). Propagation of obliquely incident water waves over a trench. J. of Fluid Mech., Vol. 133, pp. 47-63. https://doi.org/10.1017/S0022112083001780
- Lesieur, M., Metais, O., and Comte, P. (2005). Large-eddy simulations of turbulence. Cambridge Univ. Press, New York, N.Y..
- Lin, P. (2004) A numerical study of solitary wave interaction with rectangular obstacles. Coastal Engrg., Vol. 51, pp. 35-51. https://doi.org/10.1016/j.coastaleng.2003.11.005
- Liu, P.L.F. and Cho, Y.S. (1993). Bragg reflection of infragravity waves by sandbars. J. of Geophysical Research, Vol. 98, pp. 22,733-22,741. https://doi.org/10.1029/93JC02350
- Madsen, O.S. and Mei, C.C. (1969). The transformation of a solitary wave over an uneven bottom. J. of Fluid Mech., Vol. 39, pp. 781-791. https://doi.org/10.1017/S0022112069002461
- Manshinha, L. and Smylie, D.E. (1971). The displacement fields of incident faults. Bull. Seismol. Soc. Amer., Vol. 61, No. 5, pp. 1433-1440.
- Ohyama, T. and Nadaoka, K. (1991). Development of a numerical wave tank for analysis of non-linear and irregular wave field. Fluid Dyna. Res., Vol. 8, pp. 231-251. https://doi.org/10.1016/0169-5983(91)90045-K
- Seabra-Santntos, F.J., Renouard, D.P. and Temperville, A.M. (1987). Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. J. of Fluid Mech., Vol. 176, pp. 117-134. https://doi.org/10.1017/S0022112087000594
- Sohn, D.H., Ha, T.M. and Cho, Y.S. (2009). Distant tsunami simulation with corrected dispersion effects. Coastal Engrg. J., Vol. 51, No. 2, pp.123-141. https://doi.org/10.1142/S0578563409001977
- Smagorinsky, J. (1963). General circulation experiments with the primitive equations. Mon, Weath. Rev., Vol. 91, No. 3, pp. 99- 164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
- Tang, C.J. and Chang, J.H. (1998). Flow separation during solitary wave passing over submerged obstacles. J. of Hydraulic Engrg., ASCE, Vol. 124, No. 7, pp. 742-749. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:7(742)
- Zhuang, F. and Lee, J.J. (1996). A viscous rotational model for wave overtopping over marine structure. Proc. 25th Int. Conf. Coastal Engrg., ASCE, pp. 2178-2191.