• Title/Summary/Keyword: 3-D numerical wave flum

Search Result 1, Processing Time 0.014 seconds

Control of Short-period and Solitary Waves Using Two-rowed Impermeable Rectangular Submerged Dike (2열 불투과성 사각형 잠제를 이용한 단주기파랑 및 고립파의 제어)

  • Lee, Kwang-Ho;Jung, Sung-Ho;Ha, Sun-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.203-214
    • /
    • 2010
  • This study numerically investigates the wave control of 2-rowed Impermeable Rectangular Submerged Dike(IRSD) with an object of how to control short-period and solitary waves simultaneously based on the Bragg resonance phenomenon that elevates the wave control performance. The boundary integral method using Green formula and the 3-D one-field Model for immiscible TWO-Phase flows (TWOPM-3D) by 3-D numerical wave flume have been used for the numerical predictions for short-period and solitary waves, respectively. These numerical models were verified through the comparisons with the previously published numerical results by other researchers. Through the parametric tests of numerical experiments for short-period waves, an optimum model of 2-rowed IRSD of a lowest transmission coefficient has been found. Furthermore, the performances of 3-D wave control for solitary waves were evaluated for the various free board, crown widths and gap distance between dikes, and have been compared with those of a single-rowed IRSD. Numerical results show that a 2-rowed IRSD with a less cross sectional area than 1-rowed one improves the wave attenuation performances when it is compared to that of single-rowed IRSD. Within the test frequency ranges of the numerical simulations conducted in this study, 2-rowed IRSD with an optimum gap distance shows an outstanding improvement of the wave attenuation up to 58% compared to that of single-rowed IRSD.