• Title/Summary/Keyword: 파형 분석

Search Result 980, Processing Time 0.023 seconds

Analysis of Characteristics of Horizontal Response Spectrum of Ground Motions from Fukuoka Earthquakes Series (Fukuoka 연속 지진의 관측자료를 이용한 수평 응답스펙트럼 특성 분석)

  • Kim, Jun Kyoung
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.354-365
    • /
    • 2014
  • The horizontal response spectra using the observed ground motions from 15 Fukuoka earthquake series, including main earthquake (2005/03/20; Mw=6.5), were analysed and then were compared to both the seismic design response spectra (Regulatory Guide 1.60), applied to the domestic nuclear power plants, and the Korean Standard Design Response Spectrum for general structures and buildings (1997). 178 horizontal ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that response spectrum have strong dependency on epicentral distance. The results also showed that the horizontal response spectra revealed higher values for frequency bands at two frequency bands (about 8 - 10 and 16- 20 Hz) than Regulatory Guide 1.60. The results were also compared to the Korean Standard Building Design Spectrum for the 3 different soil types and showed that thehorizontal response spectra revealed higher values for almost all period bands than the Korean Standard Response Spectrum (500 yrs; Return Period; Seismic province 1; SE soil conditions). Through the qualitative improvements and quantitative enhancement of the observed ground motions, the diversity of the observed ground motions should be considered more significantly to improve the certainty of response spectrum.

Microseismic Monitoring Using Seismic Mini-Array (소규모 배열식 지진관측소를 이용한 미소지진 관측)

  • Sheen, Dong-Hoon;Cho, Chang Soo;Lee, Hee Il
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • It was introduced a seismic mini-array that could monitor microseismicity efficiently and analyzed seismic data obtained from the mini-array that was operated from December 19, 2012 to January 9, 2013. The mini-array consisted of a six channel data logger, a central 3 components seismometer, and a tripartite array of vertical sensors centered around the 3 components seismometer as an equilateral triangle with about 100 m aperture. All seismometers that had the same instrument response were connected a 6 channel data logger, which was set to record seismograms at a sampling rate of 200 sps. During the three weeks of campaign, a total of 16 microearthquakes were detected. Using time differences of P wave arrivals from the vertical components, S-P time from 3 components seismometers, and back azimuth from the seismic array analysis, it was possible to locate the hypocenter of the microearthquake even with one seismic miniarray. The epicenters of two nearest microearthquakes were a quarry site located 1.3 km from the mini-array. The records of quarry blasting confirmed the our analysis.

A Study on Field Seismic Data Processing using Migration Velocity Analysis (MVA) for Depth-domain Velocity Model Building (심도영역 속도모델 구축을 위한 구조보정 속도분석(MVA) 기술의 탄성파 현장자료 적용성 연구)

  • Son, Woohyun;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.225-238
    • /
    • 2019
  • Migration velocity analysis (MVA) for creating optimum depth-domain velocities in seismic imaging was applied to marine long-offset multi-channel data, and the effectiveness of the MVA approach was demonstrated by the combinations of conventional data processing procedures. The time-domain images generated by conventional time-processing scheme has been considered to be sufficient so far for the seismic stratigraphic interpretation. However, when the purpose of the seismic imaging moves to the hydrocarbon exploration, especially in the geologic modeling of the oil and gas play or lead area, drilling prognosis, in-place hydrocarbon volume estimation, the seismic images should be converted into depth domain or depth processing should be applied in the processing phase. CMP-based velocity analysis, which is mainly based on several approximations in the data domain, inherently contains errors and thus has high uncertainties. On the other hand, the MVA provides efficient and somewhat real-scale (in depth) images even if there are no logging data available. In this study, marine long-offset multi-channel seismic data were optimally processed in time domain to establish the most qualified dataset for the usage of the iterative MVA. Then, the depth-domain velocity profile was updated several times and the final velocity-in-depth was used for generating depth images (CRP gather and stack) and compared with the images obtained from the velocity-in-time. From the results, we were able to confirm the depth-domain results are more reasonable than the time-domain results. The spurious local minima, which can be occurred during the implementation of full waveform inversion, can be reduced when the result of MVA is used as an initial velocity model.

Development of a split beam transducer for measuring fish size distribution (어체 크기의 자동 식별을 위한 split beam 음향 변환기의 재발)

  • 이대재;신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.3
    • /
    • pp.196-213
    • /
    • 2001
  • A split beam ultrasonic transducer operating at a frequency of 70 kHz to use in the fish sizing echo sounder was developed and the acoustic radiation characteristics were experimentally analyzed. The amplitude shading method utilizing the properties of the Chebyshev polynomials was used to obtain side lobe levels below -20 dB and to optimize the relationship between main beam width and side lobe level of the transducer, and the amplitude shading coefficient to each of the elements was achieved by changing the amplitude contribution of elements with 4 weighting transformers embodied in the planar array transducer assembly. The planar array split beam transducer assembly was composed of 36 piezoelectric ceramics (NEPEC N-21, Tokin) of rod type of 10 mm in diameter and 18.7 mm in length of 70 kHz arranged in the rectangular configuration, and the 4 electrical inputs were supplied to the beamformer. A series of impedance measurements were conducted to check the uniformity of the individual quadrants, and also in the configurations of reception and transmission, resonant frequency, and the transmitting and receiving characteristics were measured in the water tank and analyzed, respectively. The results obtained are summarized as follows : 1. Average resonant and antiresonant frequencies of electrical impedance for four quadrants of the split beam transducer in water were 69.8 kHz and 83.0 kHz, respectively. Average electrical impedance for each individual transducer quadrant was 49.2$\Omega$ at resonant frequency and 704.7$\Omega$ at antiresonant frequency. 2. The resonance peak in the transmitting voltage response (TVR) for four quadrants of the split beam transducer was observed all at 70.0 kHz and the value of TVR was all about 165.5 dB re 1 $\mu$Pa/V at 1 m at 70.0 kHz with bandwidth of 10.0 kHz between -3 dB down points. The resonance peak in the receiving sensitivity (SRT) for four combined quadrants (quad LU+LL, quad RU+RL, quad LU+RU, quad LL+RL) of the split beam transducer was observed all at 75.0 kHz and the value of SRT was all about -177.7 dB re 1 V/$\mu$Pa at 75.0 kHz with bandwidth of 10.0 kHz between -3 dB down points. The sum beam transmitting voltage response and receiving senstivity was 175.0 dB re 1$\mu$Pa/V at 1 m at 75.0 kHz with bandwidth of 10.0 kHz, respectively. 3. The sum beam of split beam transducer was approximately circular with a half beam angle of $9.0^\circ$ at -3 dB points all in both axis of the horizontal plane and the vertical plane. The first measured side lobe levels for the sum beam of split beam transducer were -19.7 dB at $22^\circ$ and -19.4 dB at $-26^\circ$ in the horizontal plane, respectively and -20.1 dB at $22^\circ$ and -22.0 dB at $-26^\circ$ in the vertical plane, respectively. 4. The developed split beam transducer was tested to estimate the angular position of the target in the beam through split beam phase measurements, and the beam pattern loss for target strength corrections was measured and analyzed.

  • PDF

Analysis of Response Spectrum of Ground Motions from Recent Earthquakes (최근 발생지진 관측자료를 이용한 응답스펙트럼 분석)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.490-497
    • /
    • 2009
  • The horizontal and vertical response spectra using the observed ground motion from the recent 5 macro earthquakes were analysed and then were compared to both the seismic design response spectra(Reg Guide 1.60), applied to the domestic nuclear power plants, and the Korean Standard Design Response Spectrum for general structures and buildings(1997). 74 horizontal and 89 vertical observed ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that the horizontal MPOSD(Mean Plus One Sigma Standard Deviation) response spectra revealed much higher values for the whole frequency bands above 1 Hz than Reg. Guide(1.60). For the vertical response spectra, the results showed slightly higher than just between 7 and 8 Hz frequency band. The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the horizontal MPOSD response spectra revealed much higher values for the whole periods below 2 second(0.5 Hz) than those of SE soil type. The vertical response spectra showed similar to the values of the Korean Standard Response Spectrum of SD soil type. These spectral values dependent on frequency could be related to characteristics of the domestic crustal attenuation and the effect of each site amplification. However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of horizontal seismic design response spectrum should be considered more significantly for the whole frequency bands above the 1 Hz.

Change of arterial pulse wave characteristic by measurement posture and brachial blood pressure (측정 자세 및 상완 혈압에 의한 맥파 특성 변화)

  • Nam, Ki-Chang;Kim, Eun-Gun;Hoe, Hyun;Huh, Young
    • Science of Emotion and Sensibility
    • /
    • v.12 no.3
    • /
    • pp.299-306
    • /
    • 2009
  • In this study, pulse waves were measured at radial artery using non-invasive tonometric pulse pressure measurement system, SphygmoCor(AtCor, Australia), according to subject's posture. Then it was analysed whether the pulse wave parameters, which contain heart activities, change among three different postures (upright stand, sit, and supine). And it was also verified that the pulse wave parameters change among blood pressure level groups(hypotensive, normotensive, and hypertensive). As a results, posture effects were verified in time information of pulse wave rather than amplitude. But some parameters calculated by ratio of two amplitude, such as augmented index(AI) and ratio of central aortic pulse and radial artery pulse, showed significant difference according to postures. In post hoc test, time to the $1^{st}$ and $2^{nd}$ pulse peak(P_$T_1$, and P_$T_2$), ED(ejection duration), and HR(heart rate) showed significant difference among posture groups with each other. In comparison of blood pressure groups, it was verified that the parameters related to amplitude of pulse wave showed significant difference rather than time information.

  • PDF

Study for discriminating method of origin side vibration from non-symptomatic clicking group (단순악관절 잡음군에서 좌/우 진동 감별방법 연구)

  • Jung, Da-Un;Kang, Dong-Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.1
    • /
    • pp.38-46
    • /
    • 2016
  • Purpose: study for discriminating method of origin side vibration from non-symptomatic clicking group. Materials and Methods: 60 joints vibrations of 30 subjects in non-symptomatic clicking group was recorded via subject's awareness, examiner's palpation and JVA analysis. Origin side vibration was discriminated with consideration for frequency spectrum, time delay and phase shift of waveforms, analysis of numeric values. Results: There were all unilateral vibrations with JVA analysis and number of origin vibrations were 42. 11 pairs of vibrations showed time delay and phase shift and transferred side vibrations showed smaller values of total integral and bigger values of > 300 / < 300 ratio than origin side vibrations except one pair of vibrations. Also as the ipsi-lateral joint vibrations with smaller values of total integral showed bigger values of > 300 / < 300 ratio than the contra-lateral joint vibrations and there all ipsi-lateral vibrations were showed small values of total integral below 10 and hard to detect time delay and phase shift. So the features were used in discrimination of origin side vibrations. Conclusion: There should be all-around considerations for discrimination of origin side vibrations that is frequency spectrum, phase shift and time delay and analysis of numeric values.

Analysis of Characteristics of Vertical Response Spectrum of Ground Motions from Domestic Earthquakes (국내 관측자료를 이용한 수직 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung;Hong, Seung-Min;Park, Ki-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.227-234
    • /
    • 2010
  • The vertical response spectra using the observed ground motions from the recent more than 30 macro earthquakes were analysed and then were compared both to the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and to the Korean Standard Design Response Spectrum for general structures and buildings (1997). 176 vertical ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that response spectrum had strong dependency on epicentral distance. The results also showed that the vertical response spectra revealed much higher values for frequency bands above 5~7 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed much higher values for the frequency bands below 0.2 second (5 Hz) than the Korean Standard Response Spectrum (SD soil condition). These frequency-dependent spectral values could be related to the characteristics of the domestic crustal attenuation and the effect of each site amplification. However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of vertical seismic design response spectrum should be considered more significantly for the frequency bands above 5 Hz.

Analysis of Characteristics of Seismic Source and Response Spectrum of Ground Motions from Recent Earthquake near the Backryoung Island (최근 백령도해역 발생지진의 지진원 및 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.274-281
    • /
    • 2011
  • We analysed ground motions form Mw 4.3 earthquake around Backryoung Island for the seismic source focal mechanism and horizontal response spectrum. Focal mechanism of the Backryoung Islands area was compared to existing principal stress orientation of the Korean Peninsula and horizontal response spectrum was also compared to those of the US NRC Regulatory Guide (1.60) and the Korean National Building Code. The ground motions of 3 stations, including vertical, radial, and tangential components for each station, were used for grid search method of moment tensor seismic source. The principal stress orientation from this study, ENE-WSW, is consistent fairly well with that of the Korean Peninsula. The horizontal response spectrum using 30 observed ground motions analysed and then were compared to both the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and the Korean Standard Design Response Spectrum for general structures and buildings (1997). Response spectrum of 30 horizontal ground motions were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that the horizontal response spectrum revealed higher values for frequency bands above 3 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed higher values for the frequency bands below 0.8 second than the Korean Standard Response Spectrum (SD soil condition). However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of horizontal seismic design response spectrum should be considered more significantly for the higher frequency bands.

A Comparison Study of the Site Amplification Characteristics and Seismic Wave Energy Levels at the Sites near Four Electric Substations (4개 변전소시설 부지 인근관측소의 지반증폭 특성 및 파형에너지 수준 비교 연구)

  • Yoo, Seong-Hwa;Kim, Jun-Kyoung;Wee, Soung-Hoon
    • Journal of the Korean earth science society
    • /
    • v.37 no.1
    • /
    • pp.40-51
    • /
    • 2016
  • The problem has been pointed out that the domestic design response spectrum does not reflect site amplification, particularly in the high frequency bands, including the fact that site specific response spectrum from the observed ground motions appears relatively higher than design response spectrum. Among various methods, this study applied H/V spectral ratio of ground motion for estimating site amplification. This method, originated from S waves and Rayleigh waves, recently has been extended to Coda waves and background noise for estimating site amplification. For limited time of periods, 4 electric substation sites had operated seismic stations at two separate locations (bedrock and borehole) within each substation site. H/V spectral ratio of S wave, Coda wave, and background noise, was applied to 36 accelerations of 3 macro earthquakes (Odaesan, Jeju and Gongju earthquakes), larger than magnitude 3.4. observed simultaneously at each bedrock location within 4 electric substation sites. Site amplifications at the bedrock location of 4 sites were compared among S wave, Coda wave energy, and background noise, and then compared to the previous results from the borehole location data. The site classification was also tried using resonancy frequency information at each site and location. The results suggested that all the electric substation sites showed similar site amplification patterns among S wave, Coda wave, and background noise. Each station showed its own characteristics of site amplification property in low, high and specific resonance frequency ranges. Comparison of this study to other results using different method can give us much more information about dynamic amplification of domestic sites characteristics and site classification.