• Title/Summary/Keyword: 파형로

Search Result 2,915, Processing Time 0.033 seconds

An Experimental Study on the Bolted Connection Fatigue Capacity of Corrugated Steel Plates (파형강판 볼트 이음부의 피로성능에 관한 실험적 연구)

  • Oh, Hong-Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.54-63
    • /
    • 2014
  • Corrugated steel plate structure, which is built by assembling corrugated steel plate segments with bolts on site and filling the surroundings with quality soil, is widely used for buried structures as a eco-corridors, small bridges, and closed conduits. This experimental study is dealt with the static and fatigue performance of bolt connected corrugated steel plates under flexural loading. The experimental variables to verify the fatigue performance are bolt diameters and detailing of connection such as washer and the corrugation dimension of specimens has a $400{\times}150$ mm. The experimental ultimate strength of specimens under static loading was higher than the theoretical strength and all specimen failed by a bearing and tearing failure of bolt hole of upper plate. Therefore, a fatigue tests of specimens had 6.0mm and 7.0mm thickness was conducted in which the load range was up to 209kN and 516kN, respectively. From the fatigue test, failure patterns are changed from plate bearing and tearing which is a typical failure pattern of static failure to a bearing failure of plate and shear failure of bolt, and experimental fatigue limit at $2{\times}10^6$cycles is about 85MPa.

An Investigation of the Shear Buckling Characteristics of Sinusoidal Corrugated Steel Plates (정현파형 주름강판의 전단좌굴특성 분석)

  • Shon, Su-Deok;Yoo, Mi-Na;Lee, Seung-Jae;Kang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.10-19
    • /
    • 2014
  • Corrugated steel plates are made by fabricating thin steel plates to have trapezoidal or sinusoidal corrugation, and the corrugated plates are able to maintain high out-of-plane rigidity even when they are used instead of thick flat plates. Also, corrugated steel plates have almost no axial rigidity due to the accordion effect. Thus, if they are applied to the webs of plate girders, designing can be easily conducted so that the webs bear only shear stresses. However, unlike flat plates, the shear buckling of corrugated steel plates has very complex characteristics where buckling occurs due to the interaction of local and global buckling, besides local buckling and global buckling. For the investigation of the cause and characteristics of this interactive buckling, studies on sinusoidal corrugated steel plates are fewer than studies on trapezoidal corrugated steel plates. Therefore, in this study, the shear buckling characteristics of sinusoidal corrugated steel plates and the occurrence pattern of interactive buckling were investigated. For the calculation of shear buckling strength, a finite element program was used, and the analysis results were compared with the exact solution. In addition, the characteristics of buckling stress change and the change of buckling mode shape depending on corrugation thickness and shape parameter were analyzed, and by comparing these results with the results of a theoretical equation, the timing of buckling mode change was analyzed.

Velocity Model Building using Waveform Inversion from Single Channel Engineering Seismic Survey (탄성파 파형역산을 이용한 엔지니어링 목적의 단일채널 탄성파 탐사자료에서의 속도모델 도출)

  • Choi, Yeon Jin;Shin, Sung Ryul;Ha, Ji Ho;Chung, Woo Keen;Kim, Won Sik
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.231-241
    • /
    • 2014
  • Recently, single channel seismic survey for engineering purpose have been used widely taking advantage of simple processing. However it is very difficult to obtain high fidelity subsurface image by single channel seismic due to insufficient fold coverage. Recently, seismic waveform inversion in multi channel seismic survey is utilized for accurate subsurface imaging even in complex terrains. In this paper, we propose the seismic waveform inversion algorithm for velocity model building using a single channel seismic data. We utilize the Gauss-Newton method and assume that subsurface model is 1-Dimensional. Seismic source estimation technique is used and offset effect is also corrected by removing delay time by offset. Proposed algorithm is verified by applying modified Marmousi2 model, and applied to field data set obtained in port of Busan.

Feeding Behavior of the Small Brown Planthopper, Laodelphax striatellus (Hemiptera: Delphacidae) on Rice Plants Based on EPG Waveform, Honeydew Excretion, and Microsection Analysis (EPG 파형과 감로 분비, 미세절편 관찰로 해석된 애멸구의 벼 섭식행동)

  • Seo, Bo Yoon;Kwon, Youn-Hee;Jung, Jin Kyo;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.55 no.4
    • /
    • pp.351-358
    • /
    • 2016
  • Consistent with a previous study on the brown planthopper Nilaparvata lugens (BPH) (Seo et al., 2009), we identified seven distinct EPG waveforms (np, L1, L2, L3, L4-a, L4-b, and L5) in adult female Laodelphax striatellus (SBPH) that fed on rice plants, by using the direct current electrical penetration graph (DC-EPG) system. The shape of waveforms and the pattern of occurrence of each waveform of SBPH were very similar to those of BPH. L3 and L4-a always occurred prior to L4-b. Periodical honeydew excretion was observed in L4-b only. Microsection observation following laser stylectomy revealed that the tips of SBPH stylets severed in L3, L4-a, and L4-b were commonly located in or near the phloem region of rice plants, but were located in the xylem in L5. Plant sap flowed from the stylets severed in L4-b only, and its main carbohydrate component was detected as sucrose by HPLC analysis. These results and the patterns of EPG waveform progress in SBPH suggested that feeding activities on rice plant tissue were relevant to each EPG waveform. L1 and L2 corresponded to the initiation of stylet penetration and stylet movement with salivation on the outside of the vascular bundle. L3 and L4-a were related to feeding activities within the phloem region in preparation for phloem sap ingestion. L4-b was closely associated with phloem sap ingestion, and L5 corresponded to xylem feeding behavior.

Comparison in Elastic Wave Propagation Velocity Evaluation Methods (탄성파의 매질 내 이동속도 산정방법 비교)

  • Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.31-37
    • /
    • 2014
  • In situ investigations and laboratory tests using elastic wave have become popular in geotechnical and geoenvironmental engineering. Propagation velocity of elastic wave is the key index to evaluate the ground characteristics. To evaluate this, various methods were used in both time domain and frequency domain. In time domain, the travel time can be found from the two points that have the same phase such as peaks or first rises. Cross-correlation can also be used in time domain by evaluating the time shift amount that makes the product of signals of input and received waveforms maximum. In frequency domain, wave propagation velocity can be evaluated by computing the phase differences between the source and received waves. In this study, wave propagation velocity evaluated by the methods listed above were compared. Bender element tests were conducted on the specimens cut from the undisturbed hand-cut block samples obtained from Block 37 excavation site in Chicago, IL, US. The evaluation methods in time domain provides relatively wide range of wave propagation velocities due to the noise in signals and the sampling frequency of data logger. Frequency domain approach provides relatively accurate wave propagation velocities and is irrelevant to the sampling frequency of data logger.

Application of Displacement-Vector Objective Function for Frequency-domain Elastic Full Waveform Inversion (주파수 영역 탄성파 완전파형역산을 위한 변위벡터 목적함수의 적용)

  • Kwak, Sang-Min;Pyun, Suk-Joon;Min, Dong-Joo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.220-226
    • /
    • 2011
  • In the elastic wave equations, both horizontal and vertical displacements are defined. Since we can measure both the horizontal and vertical displacements in field acquisition, these displacements compose a displacement vector. In this study, we propose a frequency-domain elastic waveform inversion technique taking advantage of the magnitudes of displacement vectors to define objective function. When we apply this displacement-vector objective function to the frequency-domain waveform inversion, the inversion process naturally incorporates the back-propagation algorithm. Through the inversion examples with the Marmousi model and the SEG/EAGE salt model, we could note that the RMS error of the solution obtained by our algorithm decreased more stably than that of the conventional method. Particularly, the density of the Marmousi model and the low-velocity sub-salt zone of the SEG/EAGE salt model were successfully recovered. Since the gradient direction obtained from the proposed objective function is numerically unstable, we need additional study to stabilize the gradient direction. In order to perform the waveform inversion using the displacementvector objective function, it is necessary to acquire multi-component data. Hence, more rigorous study should be continued for the multi-component land acquisition or OBC (Ocean Bottom Cable) multi-component survey.

Analysis on Spectral Regrowth of Bandwidth Expansion Module by Quadrature Modulation Error in Digital Chirp Generator (디지털 첩 발생기에서의 직교 변조 오차에 의한 대역 확장 모듈에서의 스펙트럴 재성장 분석)

  • Kim, Se-Young;Sung, Jin-Bong;Lee, Jong-Hwan;Yi, Dong-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.761-768
    • /
    • 2010
  • This paper presents an effective method to achieve the wideband waveform for high resolution SAR(Synthetic Aperture Radar) using the frequency multiplication technique. And also this paper analyzes the root causes for the spectral regrowth due to 3rd-order intermodulation in chirp bandwidth expansion scheme using quadrature modulator and frequency multipliers. The amplitude and phase imbalance requirement are defined based on the simulation results in terms of quadrature channel imbalance. This minimizes the degradation of range resolution, peak sidelobe ratio and integrated sidelobe ratio. The wideband chirp generator using the frequency multiplier and memory map scheme was manufactured and the compensation technique was presented to reduce the spectral regrowth of SAR waveform by minimizing the amplitude and phase imbalance. After I and Q channel imbalance adjustment, the carrier level reduces -28.7 dBm to -53.4 dBm. Chirp signal with 150 MHz bandwidth at S-band expands to 600 MHz bandwidth at X-band. The sidelobe levels are reduced by about 8 to 9 dB by compensating the amplitude balance between I and Q channels.

Crashworthiness Analysis and Shape Design Optimization of Thin-walled Corrugated Tubes under Axial Impact (축 방향 충격을 받는 박판 파형관의 충돌안전도 해석 및 형상 최적설계)

  • Ahn, Seung Ho;Jung, Hyun Seung;Kim, Jin Sung;Son, Seung Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.128-135
    • /
    • 2021
  • Thin-walled tubes have been widely used as energy absorbing devices because they are light and have high energy-absorption efficiency. However, the downside is that conventional thin-walled tubes usually exhibit an excessive initial peak crushing force (IPCF) and a large fluctuation in the load-displacement curve, and thus lack stability as energy absorbing devices. Corrugated tubes were introduced to reduce IPCF and to increase the stability of collision energy-absorbing devices. Since the performance of corrugated tubes is highly influence by geometry, design optimization methods can be utilized to optimize the performance of corrugated tubes. In this paper, we utilize shape design optimization based on an adaptive surrogate model for crashworthiness analysis. The amplitude and wavelength of the corrugation, as well as curvature changes in the features, are the design variables. A morphing methodology is adopted to perform shape design parameterization. Through numerical examples, we compare optimal design results based on the adaptive surrogate model, with optimal results based on conventional surrogate models, and we show that direct optimal design methods produce more efficient results.

Analysis on the source characteristics of three earthquakes nearby the Gyeongju area of the South Korea in 1999 (1999년 경주 인근에서 3차례 발생한 지진들의 지진원 특성 분석)

  • Choi, Ho-Seon;Shim, Taek-Mo
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.509-515
    • /
    • 2009
  • Three earthquakes with local magnitude ($M_L$) greater than 3.0 occurred on April 24, June 2 and September 12 in 1999 nearby the Gyeongju area. Redetermined epicenters were located within the radius of 1 km. We carried out waveform inversion analysis to estimate focal mechanism of June 2 event, and P and S wave polarity and their amplitude ratio analysis to estimate focal mechanisms of April 24 and September 12 events. June 2 and September 12 events had similar fault plane solutions each other. The fault plane solution of April 24 event included those of other 2 events, but its distribution range was relatively broad. Focal mechanisms of those events had a strike slip faulting with a small normal component. P-axes of those events were ENE-WSW which were similar to previous studies on the P-axis of the Korean Peninsula. Considering distances between epicenters, similarities of seismic waves and sameness of polarities of seismic data recorded at common seismic stations, these events might occurred at the same fault. The seismic moment of June 2 event was estimated to be $3.9\;{\times}\;10^{14}\;N{\cdot}m$ and this value corresponded to the moment magnitude ($M_W$) 3.7. The moment magnitude estimated by spectral analysis was 3.8, which was similar to that estimated by waveform inversion analysis. The average stress drop was estimated to be 7.5 MPa. Moment magnitudes of April 24 and September 12 events were estimated to be 3.2 and 3.4 by comparing the spectrum of those events recorded at common single seismic station.

Evaluation and interpretation of the effects of heterogeneous layers in an OBS/air-gun crustal structure study (OBS/에어건을 이용한 지각구조 연구에서 불균질층의 영향에 대한 평가와 해석)

  • Tsuruga, Kayoko;Kasahara, Junzo;Kubota, Ryuji;Nishiyama, Eiichiro;Kamimura, Aya;Naito, Yoshihiro;Honda, Fuminori;Oikawa, Nobutaka;Tamura, Yasuo;Nishizawa, Azusa;Kaneda, Kentaro
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • We present a method for interpreting seismic records with arrivals and waveforms having characteristics which could be generated by extremely inhomogeneous velocity structures, such as non-typical oceanic crust, decollement at subduction zones, and seamounts in oceanic regions, by comparing them with synthetic waveforms. Recent extensive refraction and wide-angle reflection surveys in oceanic regions have provided us with a huge number of high-resolution and high-quality seismic records containing characteristic arrivals and waveforms, besides first arrivals and major reflected phases such as PmP. Some characteristic waveforms, with significant later reflected phases or anomalous amplitude decay with offset distance, are difficult to interpret using only a conventional interpretation method such as the traveltime tomographic inversion method. We find the best process for investigating such characteristic phases is to use an interactive interpretation method to compare observed data with synthetic waveforms, and calculate raypaths and traveltimes. This approach enables us to construct a reasonable structural model that includes all of the major characteristics of the observed waveforms. We present results here with some actual observed examples that might be of great help in the interpretation of such problematic phases. Our approach to the analysis of waveform characteristics is endorsed as an innovative method for constructing high-resolution and high-quality crustal structure models, not only in oceanic regions, but also in the continental regions.