• Title/Summary/Keyword: 파향

Search Result 118, Processing Time 0.03 seconds

A Comparative Study on the Methods Estimating Wave Directional Spectrum (파향스펙트럼 추정법의 비교 연구)

  • 오병철;심재설
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.3
    • /
    • pp.119-127
    • /
    • 1990
  • Wave directional spectrum estimation methods for irregular waves were considered in this study. Until now, the Longuet-Higgins Method (LHM) initiated by Longuet-Higgins et al. (1963) has been widely used, but resolutions of the estimation were found to be low. Kobune's Maximum Entropy Method (MEM) for the estimation of wave directional spectrum, bas-ed on the entropy Principle showed higher resolutions comparing with the LHM . If the wave directional spectrum is of Delta functions, the MEM is exact in its estimation. It was also found that for a unimodal spectrum, if the Mitsuyasu's spreading coefficient is above 5, the estimation resolutions were high. In bimodal spectrum, as the angle difference between the two peaks increased, the resolution improved. The energy seems to transfer to the smoother peak in the smoothing of peak's peakedness. LHM has a tendency to estimate bimodal spectrum as a unimodal spectrum ; thus, except for its computational speed, the resolution of LHM falls far below that of MEM.

  • PDF

Variation of Incident Wave Angle in the Surf Zone Observed from Digital Videos (해안 비디오로부터 관측된 쇄파지역에서 입사각의 변화)

  • Yoo, Je-Seon;Shin, Dong-Min;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.154-163
    • /
    • 2009
  • Incident wave angles are conventionally estimated by the directional spectrum analysis of wave data collected from in-situ sensors. The in-situ measurements are limited in monitoring incident wave angles in the wide surf zone, since the techniques are typically expensive, labor-intensive, and point-measuring. In this study, estimation of incident wave angles using wave crest features captured in digital video imagery is proposed to observe incident wave directions over the surf zone. Line signatures of wave crests having high image pixel intensities are extracted by moving an interrogation window to identify high intensity pixels in sequential video images. Wave angles are computed by taking the first derivative of the extracted crest signatures, i.e. local slope of the crest signatures in the two-dimensional physical plane. Compared to the wave angle estimates obtained by the directional spectrum analysis, video-based wave angle estimates show good agreements in general.

Analysis of Wave Distribution at Nakdong River Estuary Depending on the Incident Wave Directions Based on SWAN Model Simulation (SWAN 모델을 이용한 낙동강 하구역의 입사파향별 파랑분포 특성)

  • Park, Soon;Yoon, Han-Sam;Park, Hyo-Bong;Ryu, Seung-Woo;Ryu, Cheong-Ro
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.188-196
    • /
    • 2009
  • This study conducted numerical simulations to analyze the wave characteristics(distribution) depending on the directional changes of waves in the Nakdong river estuary by using SWAN(Simulating WAves Nearshore) model. The results from the tests are summarized as below. The wave height rates are generally highly distributed with the incident waves from the S, SSE, SSW, SE, SW in sequence. When the waves from the S, SSW, SSE directions are predominant, the bigger waves were observed in front of sandbars. According to the results of the wave steepness against the wave direction, at the east coast of Gadeok island(northwest of Nakdong estuary), where has mild seabed slopes, the wave height rates distribute in the range of 0.4~0.6; the wave height rates over the west coastal region of Dadeapo(southeast of Nakdong estuary) are 0.5~0.6. The wave height rate tends to be rapidly decreased over the east region of Nakdong river estuary rather than its west region.

  • PDF

On Statistical Properties of the Extreme Waves in Hong-do Sea Area During Typhoons (홍도 해역에서 태풍 중 극한파의 통계적 특성에 대한 연구)

  • Ryu Hwanajin;Kim Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.47-55
    • /
    • 2004
  • In this paper, The statistical properties of ocean waves in the sea area of Hong-do, Korea are examined based on 1998-2002's wave data from a directional wave buoy. Wave data aquisition rate, mean wave heights, frequency of wave direction are summarized. Wave height and period scatter diagrams and n-year return period wave heights are estimated. Wave periods of maximum wave heights are also estimated. Large amplitude wave characteristics during the typhoon Prapiroon in 2000, Rusa in 2002 are also examined.

  • PDF

On the Joint Distribution of Wave Height, Period and Wave Direction in Random Sea Waves (다방향불규칙파랑장에서의 파고, 주기, 파향의 종합확률분포 유도과정 및 적합성)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.75-82
    • /
    • 1990
  • A Wave transformation including wave breaking in shallow water region is a non-linear and discontinuous Phenomenon. Therefore, a so-called individual wave analysis (or a wave by wave analysis) rather than spectral approach seems to be adequate to investigate the wave transformation in such regions. In this study, a theoretical joint distribution of wave height, period and wave direction of zero-down crossing waves, which is required in the individual wave analysis in the shallow water region, is derived based on the hypothesis that sea surface is a Gaussian stochastic process and that a band-width of energy spectra is sufficiently narrow. The derived i oint distribution is found to be an effective measure to investigate characteristics of three-dimensional random wave field in shallow water through field measurements.

  • PDF

Tidal Variation of Waves in Kyung-Gi Bay (경기만 조석조건에서의 파랑변이)

  • 김지웅
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.2
    • /
    • pp.87-95
    • /
    • 2000
  • Spectral wave models are applied to the area of Kyung-gi bay with two different combinations. One combination assumes a constant tidal elevation over the whole region when applying the wave model to the area. In this case no tidal currents exist in any place. The other combination employs tide model as well as wave model so that tidal condition is defined at every computation time when wave modelling is carried out. Significant wave heights and wave directions are shown for these two cases. With these two different constraints of tidal variation, the results are checked and compared with each other. Both results are found significantly different from each other.

  • PDF

A Study on the Estimation of Ocean Surface Wave Information from Marine Radar Signals (선박 레이더 영상신호를 이용한 파랑정보 검출에 관한 연구)

  • Song, Chae-Uk;Kim, Chang-Je;Moon, Seong-Bae
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.499-504
    • /
    • 2003
  • This paper describes the system for evaluating the sea wave informations such as wave direction and wave length in real time, by using image data obtained from the marine X-band radar. We proposed here a method for automatic selection of the partial image data without the user's individual selection at the radar. We also discussed that the wave direction could be obtained by a 2-dimensional discrete Fourier transform algorithm. We carried some evaluation works on the algorithm through computer simulation. The obtained thirteen radar image data under several sea surface conditions were analyzed by the method described and the result was presented.

Spatial and Temporal Variability of Significant Wave Height and Wave Direction in the Yellow Sea and East China Sea (황해와 동중국해에서의 유의파고와 파향의 시공간 변동성)

  • Hye-Jin Woo;Kyung-Ae Park;Kwang-Young Jeong;Do-Seong Byun;Hyun-Ju Oh
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Oceanic wind waves have been recognized as one of the important indicators of global warming and climate change. It is necessary to study the spatial and temporal variability of significant wave height (SWH) and wave direction in the Yellow Sea and a part of the East China Sea, which is directly affected by the East Asian monsoon and climate change. In this study, the spatial and temporal variability including seasonal and interannual variability of SWH and wave direction in the Yellow Sea and East China Sea were analyzed using European Center for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5) data. Prior to analyzing the variability of SWH and wave direction using the model reanalysis, the accuracy was verified through comparison with SWH and wave direction measurements from Ieodo Ocean Science Station (I-ORS). The mean SWH ranged from 0.3 to 1.6 m, and was higher in the south than in the north and higher in the center of the Yellow Sea than in the coast. The standard deviation of the SWH also showed a pattern similar to the mean. In the Yellow Sea, SWH and wave direction showed clear seasonal variability. SWH was generally highest in winter and lowest in late spring or early summer. Due to the influence of the monsoon, the wave direction propagated mainly to the south in winter and to the north in summer. The seasonal variability of SWH showed predominant interannual variability with strong variability of annual amplitudes due to the influence of typhoons in summer.

A Study of Statistical Properties of Waves in the Sea Area of Pohang (포항해역에서의 파랑의 통계적 특성에 대한 연구)

  • 안용호;김도영
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.216-221
    • /
    • 2001
  • In this paper, statistical properties of waves in the sea area of Pohang, Korea are examined absed on 1998-1999's wave data from directional wave buoy which is located Pohang(Janggigog). Wave data aquisition rate, monthly maximium, minimum and mean wave heights, frequency of wave direction are summarized. Wave height and period scatter diagrams and n-year return period wave heights are estimated. Wave periods of maximum wave heights are also estimated.

  • PDF

Investigation of the Design Wave Forces for Ear-Do Ocean Research Station I: Three Dimensional Hydraulic Model Tests (이어도 종합해양과학기지에 대한 설계파력의 검토 I: 삼차원 수리모형실험)

  • 전인식;심재설;최성진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.157-167
    • /
    • 2000
  • Korea Ocean Research and Development Institute performed the basic design of the Ear-Do Ocean Research Station in 1998. The design wave was taken to be the deep water wave which was obtained through wave hindcasting procedure. Wave forces acting on the structure were calculated by Morison formula utilizing the stream function theory of 5th. order. In the present study, a three dimensional hydraulic model testing was undertaken to investigate the validity of the basic design, measuring wave propagation over the Ear-Do, horizontal wave forces and air gaps. The measured forces were all compared by the corresponding values calculated by SACS program based on th design on the design wave. The results showed that in the three deep water wave directions (SSW, S, SE) the measured wave farces appeared less than the SACS calculated. But in the NNW wave direction, the measured forces generally exceeded the calculated values and showed a peculiar pattern very similar to the case that waves are superimposed by an unidirectional current. It was also found that the measured air gap underneath the structure appeared less than the values taken in the basic design for all wave directions.

  • PDF