• Title/Summary/Keyword: 파이프 유동

Search Result 221, Processing Time 0.023 seconds

Spectral Element Analysis of the Pipeline Conveying Internal Unsteady Fluid (내부 비정상 유동을 갖는 파이프계의 스펙트럼요소해석)

  • Park, Jong-Hwan;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1574-1585
    • /
    • 2005
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid. Four coupled pipe-dynamics equations are derived first by using the Hamilton's principle and the principles of fluid mechanics. The transverse displacement, the axial displacement, the fluid pressure and the fluid velocity are all considered as the dependent variables. The coupled pipe-dynamics equations are then linearized about the steady state values of the fluid pressure and velocity. As the final step, the spectral element model represented by the exact dynamic stiffness matrix, which is often called spectral element matrix, is formulated by using the frequency-domain solutions of the linearized pipe-dynamics equations. The FFT-based spectral dynamic analyses are conducted to evaluate the accuracy of the present spectral element model and also to investigate the structural dynamic characteristics and the internal fluid transients of an example pipeline system.

Effects of Attached Masses on the Instability and Vibration Suppression of a Flexible Pipe Conveying Fluid (유체유동에 의한 유연한 파이프의 불안정과 진동억제에 미치는 부가질량의 영향)

  • 류봉조;정승호;이종원
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.280-290
    • /
    • 2000
  • The paper deals with vibration suppression and dynamic stability of a vertical cantilevered pipe conveying an internal flowing fluid and having an attached mass. Real pipe systems may have some valves or mechanical attached parts, which can be regarded as attached lumped masses. The effect of attached mass on the dynamic stability of a cantilevered pipe conveying fluid is investigated for different locations and magnitudes of the attached mass. The flow rate was controlled through motor pump output and measured by a flow meter. Experimental resutls in the vicinity of flutter fluid velocity were compared with theoretical predictions. It has been found that the experimental results are in substantial agreement with the theoretical predictions. Finally, in order to suppress the vibration of the pipe subjected to a disturbance, and control technique using an internal flowing fluid is introduced.

  • PDF

A Study on Dynamic Behavior of Cantilever Pipe Conveying Fluid with Crack and Moving Mass (I) - Focused on the Amplitude Characteristics - (크랙과 이동질량을 가진 유체유동 외팔 파이프의 동특성에 관한 연구(I) - 진폭특성을 중심으로 -)

  • Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1295-1303
    • /
    • 2004
  • In this Paper a dynamic behavior of a cracked cantilever pipe conveying fluid with the moving mass is presented. It has the results focused on the response characteristics. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The cracked section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. When the fluid velocity is constant, the influences of the crack severity, the position of the crack, the moving mass and its velocity, and the coupling of these factors on the tip-displacement of the cantilever pipe are depicted.

A Study on Dynamic Behavior of Cantilever Pipe Conveying Fluid with Crack and Moving mass (II)-Focused on the Frequency Change- (크랙과 이동질량을 가진 유체유동 외팔 파이프의 동특성에 관한 연구(II)-진동수 변화를 중심으로-)

  • Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1304-1313
    • /
    • 2004
  • In this paper a dynamic behavior of a cracked cantilever pipe conveying fluid with the moving mass is presented. It has the results focused on the frequency change. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. When the velocity of the moving mass is constant, the influences of the crack severity, the position of the crack, the moving mass, and the coupling of these factors on the frequencies of the cantilever pipe are depicted.

Turbulence in temporally decelerating pipe flows (시간에 대해 감속하는 난류 파이프 유동에 관한 연구)

  • Jeong, Wongwan;Lee, Jae Hwa
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.1
    • /
    • pp.46-50
    • /
    • 2016
  • Direct numerical simulations (DNSs) of turbulent pipe flows with temporal deceleration were performed to examine response of the turbulent flows to the deceleration. The simulations were started with a fully-developed turbulent pipe flow at the Reynolds number, $Re_D=24380$, based on the pipe radius and the laminar centerline velocity, and three different constant temporal decelerations were applied to the initial flow with varying dU/dt = -0.001274, -0.00625 and -0.025. It was shown that the mean flows were greatly affected by temporal decelerations with downward shift of log law, and turbulent intensities were increased in particular in the outer layer, compared to steady flows at a similar Reynolds number. The analysis of Reynolds shear stress showed that second- and fourth-quadrant Reynolds shear stresses were increased with the decelerations, and the increase of the turbulence was attributed to enhancement of outer turbulent vortical structures by the temporal decelerations.

The Study of Using Separate Heatpipes for Thermal Control in Electronic Equipments (분리형 히트파이프를 이용한 전자장비내 발열체의 온도제어에 관한 연구)

  • 배석태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.305-311
    • /
    • 2003
  • This Paper Presents an information about the heat transfer characteristics of a separate type thermosyphon in electronic equipments. The heat removal problem of electronic equipments is regarded as an important factor and a separate type heatpipes can be utilized as a cooling device of electronic equipments (such as CPU of a Personal computer or notebook). In this study. heat source ($50\times50\times2 mm $aluminum Pseudo CPU) was used for the experiment. The device can transfer heat from the evaporator to the condenser through natural circulation (without any external driving forces) and the results indicate that the device is capable of dissipating over 60W of thermal energy and keeping the heating plate surface temperature under $50^{\circ}C$.

Stability Analysis of a Rotating Cantilever Pipe Conveying Fluid (유체유동 회전 외팔 파이프의 안정성 해석)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Dong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.701-707
    • /
    • 2007
  • In this paper the vibration system is composed of a rotating cantilever pipe conveying fluid. The equation of motion is derived by using the Lagrange's equation. Generally, the system of pipe conveying fluid becomes unstable by flutter. Therefore, the influence of the rotating angular velocity, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe by the numerical method are studied. The influence of mass ratio, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the stability of a cantilever pipe are analytically clarified. The critical fluid velocity ($u_{cr}$) is proportional to the angular velocity of the cantilever pipe. In this paper Flutter(instability) is always occurred in the second mode of the system.

Effects of Crack on Stability of Cantilever Pipe Conveying Fluid (유체유동 외팔 파이프의 안정성에 미치는 크랙의 영향)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Dong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1119-1126
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked cantilever pipe conveying fluid with tip mass is investigated. The pipe is modelled by the Euler-Bernoulli beam theory in which rotatory inertia and shear deformation effects are ignored. The equation of motion is derived by the energy expressions using extended Hamilton's Principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influence of the crack severity, the position of crack, the mass ratio, and a tip mass on the stability of a cantilever pipe conveying fluid are studied by the numerical method. Besides, the critical flow velocity and the stability maps of the pipe system as a function of mass ratios($\beta$) for the changing each parameter are obtained.

Exact Dynamic Stiffness Model for the Pipelines Conveying Internal Unsteady Flow (내부 비정상유동을 갖는 파이프계의 동강성모델링)

  • Park, Jong-Hwan;Lee, U-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1666-1671
    • /
    • 2003
  • Exact dynamic stiffness model for a uniform straight pipeline conveying unsteady fluid is formulated from a set of fully coupled pipe-dynamic equations of motion, in which the fluid pressure and velocity of internal flow as well as the transverse and axial displacements of the pipeline are all treated as dependent variables. The accuracy of the dynamic stiffness model formulated herein is first verified by comparing its solutions with those obtained by the conventional finite element model. The spectral element analysis based on the present dynamic stiffness model is then conducted to investigate the effects of fluid parameters on the dynamics and stability of an example pipeline problem.

  • PDF

Chaotic Out-of-Plane Vibration of Curved Pipe Conveying Oscillatory Flow (조화진동유동을 포함한 곡선파이프계의 외평면 혼돈 운동 연구)

  • 홍성철
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.849-858
    • /
    • 2000
  • In this paper the chaotic out-of-plane vibrations of the uniformly curved pipe with pulsating flow are theoretically investigated. The derived equations of motion contain the effects of nonlinear curvature and torsional coupling. The corresponding nonlinear ordinary differential equation is a type of nonhomogenous Hill's equation . this is transformed into the averaged equation by averaging theorem. Bifurcation curves of chaotic motion are obtained by Melnikov's method and plotted in several cases of frequency ratios. The theoretically obtained results are demonstrated by numerical simulation. And strange attractors are shown.

  • PDF