• Title/Summary/Keyword: 파손 거동

Search Result 259, Processing Time 0.029 seconds

A Study of New Wuick Tool-Life Tesing Method(I) - The Analysis of the Wear Behavior for Carbide Tool - (새로운 급속 工具壽命試驗法에 관한 硏究 (I) - 초경공구의 유동거동 분석-)

  • 오양균;정동윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.223-231
    • /
    • 1986
  • During the past decade, the Quick Tool-Life Testing Method has been studied. However, a generalized theory and testing method for the quantitative measurement of tool wear have not been developed yet. Among many factors to affect the tool wear, the flank wear is regarded as a main factor. In this study, the behavior of the flank wear for carbide tool was studied as a preceding step to present a simple method for Quick Tool-Life Testing, and it was found that the flank wear varies in direct proportion to cutting time, and the following general equation is obtained for the flank wear curves with respect to cutting time and velociety.

Low Velocity Impact Behavior of Aluminium and Glass-Fiber Honeycomb Structure (알루미늄과 유리섬유 하니컴 구조의 저속 충격 거동)

  • Kim, Jin Woo;Won, Cheon;Lee, Dong Woo;Kim, Byung Sun;Bae, Sung In;Song, Jung Il
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.116-122
    • /
    • 2013
  • In this study, impact behavior of aluminium and glass-fiber structure is studied under low impact velocity. Compression test is carried out to investigate the compressive strength of the specimens. The degree of damage is observed using microscopy and compared with the experimental analysis data. The maximum load capacity, impact strength and elastic energy of glass-fiber honeycomb sandwich panel are more than the aluminium honeycomb sandwich panel.

Shear Behavior of $Carbon/BMI({\pm}45^{\circ})_{2s}$By Acoustic Emission (음향방출을 통한 $Carbon/BMI({\pm}45^{\circ})_{2s}$의 전단 거동)

  • Lee, Taek-Su;Lee, Jong-Mun;Lee, Jae-Rak
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.888-894
    • /
    • 1994
  • In detail of fracture and mechanical properties to carbon/BMI$(\pm 45^\circ)_{2s}$ discusses by acoustic emission and tensile testing. The bismaleimide resin from Boots Technochemie Co. was toughened by TM 120 from same Co. The weight proportions of TM 120 were fixed as 0, 5, 10, 15, 20, 25phr. The 0.2phr of 1, 4-diazobicyclo-(2, 2, 2)-octane(DABC0) was used as the accelerator. The used carbon fiber was T300 from Toray Co. The optimum additional proportion of TM120 was proved as 20phr by mechanical testing and at the same time by the results of acoustic emission. toughening agent gives significant influences on the fracture phenomena and mechanical strength.

  • PDF

Localized Plastic Deformation in Heat-Resistant Alloy and Combined Two-Back Stress Hardening Model (내열합금 구조품에서의 국부적 소성변형과 이중후방응력 경화 모델)

  • Yun, Su-Jin;Lee, Sang-Yeun;Park, Dong-Chang;Yoon, Hyun-Gul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.82-88
    • /
    • 2011
  • In the present work, FEM analyses are carried out to investigate the fractures occurred within the structural part in the course of combustion experiment. The loss of structural integrity stems from the localized deformation and the damage induced due to a severe change in the thermal load. Moreover, the two-back stress evolution model is proposed using the Armstrong-Frederick and the Phillips' rules to depict the plastic deformation, and the continuum damage mechanics is also incorporated into the present model. It is noted that the present model is able to formulate a wide range of constitutive description with ease. The numerical results depicts that a severe strain localization and damage evolution can be obtained depending on the dominant back stress.

Study on Failure Characteristics of Laminate with a Hole (원공이 있는 복합적층판의 파괴특성 연구)

  • K.H.,Song;J.W.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.67-80
    • /
    • 1989
  • This Paper is concerned with the fracture behavoir of Unidirectional Laminate(UD) and the characteristic length of Multidirectional Laminate(MD) around hole under the Uniform Tensial Strain. Two fracture mechanical concepts of the Waddoups-Eisenman-Kaminski(WEK) model based on the Linear Elastic Fracture Mechanics(LEFM) and the Whitney-Nuismer Model based on Point and Average Stress Criteria were applied. The characteristic length of a laminate with a hole is then obtained using the coefficient of stress reduction and the experimental results, and it can be utilized in predicting the stress level at which the specimen will fracture. The results of the fracture characteristics and the strength of the specimens having a hole in the center can be used as the important experimental data in the research branch of the mechanical fastening of laminated structures. The Ultrasonic scanning and the Acoustic Emission(AE) method were utilized in order to find out the initial defects and the fracture behavior, respectively.

  • PDF

Modal Analysis and Failure Safety Estimation for the Satellite Antenna System Composed of Sandwich Structure with Laminated Face Sheet (적층된 외피를 갖는 샌드위치로 구성된 위성체 안테나 시스템의 모드 해석과 파손안전성 판별)

  • Oh, Se-Hee;Han, Jae-Heung;Oh, Il-Kwon;Shin, Won-Ho;Kim, Chun-Gon;Lee, In;Park, Jong-Heung
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.8-14
    • /
    • 2001
  • The satellite system experiences severe mechanical loads during the launch period. Therefore, the positive margin of safety of the satellite system must be demonstrated for every possible mechanical loading conditions during the launch period. This paper presents modal and stress analysis results due to quasi-static loads for the satellite antenna system. The failure tendency fur the sandwich construction of the satellite antenna system has been studied with various lamination angles of unidirectional prepreg.

  • PDF

Structural Analysis and Strain Monitoring of the Filament Wound Composite Motor Case used in KSR-III Rocket (KSR-III 삼단 복합재 연소관의 구조 해석 및 변형률 측정)

  • 박재성;김철웅;조인현;오승협;홍창선;김천곤
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.24-31
    • /
    • 2001
  • Filament wound structures such as pressure tanks, pipes and motor cases of rockets are widely used in the aerospace application. The determination of a proper winding angle and thickness is very important to decrease manufacturing difficulties and to increase structural efficiency. In this study, possible winding angles considering the slippage between a fiber and a mandrel surface are calculated using the semi-geodesic path equation. In addition, finite element analysis using ABAcUS are performed to predict the behavior of filament wound structures considering continuous change of winding angle along the dome part. The water-pressuring tests of 3rd stage motor case are performed to verify the analysis procedure. The strain gages are attached on the surface in the fiber direction. Progressive failure analysis is performed to predict the burst pressure and the weakest region of the motor case. The effect of reinforcement is also studied to increase its performance.

  • PDF

A Study on Estimation of the Pavement fatigue Life by Loading (하중작용(荷重作用)에 의한 포장수명(鋪裝壽命)에 관한 연구(硏究))

  • Nam, Young Kug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.83-92
    • /
    • 1989
  • For many of the rigid pavements the observations of significantly different performances were explained to relate distress mechanisms to distress manifestation and to develope better prediction of performance. This paper summarizes the result of an investigation of the resilient elastic and fatigue behavior of inservice cement concrete pavements. Static indirect tensile tests were. conducted in order to estimate the average tensile strength of each of the projects Repeat-load indirect tensile tests were conducted to determine the fatigue and resilient elastic characteristics and the relationship between fatigue life and stress/strength ratio. Deformation measurements were taken during fatigue testing in order to determine the resilient elastic properties of the material and the changes in these properties during the test period.

  • PDF

Two Dimensional Laying Simulation of Subsea Cables (유한차분법에 의한 해저케이블의 2차원 포설 시뮬레이션)

  • 박한일;김동혁;김명준;진근하
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.1
    • /
    • pp.35-42
    • /
    • 1997
  • Subsea cable systems have a large information transmission capacity and play an important role in domestic and global information networks. However since the cables are under harsh marine environment, they are exposed to various hazards with high potential risks of damage resulting in serious economic loss. In this research a computer simulation program based on the finite difference algorithm was developed. The program is able to simulate two dimensional dynamic behaviour of a submarine cable during its laying. In order to verify the numerical results, they are compared to analytical results, showing a good agreement between the two results.

  • PDF

Localized Plastic Deformation in Heat-Resistant Alloy and Combined Two-Back Stress Hardening Model (내열합금 구조품에서의 국부적 소성변형과 이중후방응력 경화 모델)

  • Yun, Su-Jin;Lee, Sang-Yeun;Park, Dong-Chang;Yoon, Hyun-Gul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.272-278
    • /
    • 2011
  • In the present work, FEM analyses are carried out to investigate the fractures occurred within the structural part in the course of combustion experiment. The loss of structural integrity stems from the localized deformation and the damage induced due to a severe change in the thermal load. Moreover, the two-back stress evolution model is proposed using the Armstrong-Frederick and the Phillips' rules to depict the plastic deformation, and the continuum damage mechanics is also incorporated into the present model. It is noted that the present model is able to formulate a wide range of constitutive description with ease. The numerical results depicts that a severe strain localization and damage evolution can be obtained depending on the dominant back stress.

  • PDF