• Title/Summary/Keyword: 파레토 분포

Search Result 57, Processing Time 0.023 seconds

Development of a Multiobjective Optimization Algorithm Using Data Distribution Characteristics (데이터 분포특성을 이용한 다목적함수 최적화 알고리즘 개발)

  • Hwang, In-Jin;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1793-1803
    • /
    • 2010
  • The weighting method and goal programming require weighting factors or target values to obtain a Pareto optimal solution. However, it is difficult to define these parameters, and a Pareto solution is not guaranteed when the choice of the parameters is incorrect. Recently, the Mahalanobis Taguchi System (MTS) has been introduced to minimize the Mahalanobis distance (MD). However, the MTS method cannot obtain a Pareto optimal solution. We propose a function called the skewed Mahalanobis distance (SMD) to obtain a Pareto optimal solution while retaining the advantages of the MD. The SMD is a new distance scale that multiplies the skewed value of a design point by the MD. The weighting factors are automatically reflected when the SMD is calculated. The SMD always gives a unique Pareto optimal solution. To verify the efficiency of the SMD, we present two numerical examples and show that the SMD can obtain a unique Pareto optimal solution without any additional information.

Multi-Point Design Optimization of 5MW HAWT Blade (5MW급 수평축 풍력발전 블레이드의 다점 최적설계)

  • Park, Kyung-Hyun;Jun, Sang-Ook;Kim, Sang-Hun;Jung, Ji-Hun;Lee, Ki-Hak;Jeon, Yong-Hee;Choi, Dong-Hoon;Lee, Dong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.474-477
    • /
    • 2009
  • 본 연구에서는 5MW급 수평축 풍력발전 블레이드에 대한 정격풍속과 낮은 풍속 영역을 고려하여 풍속에 대한 다점 최적설계를 수행하였다. 다점 최적설계를 수행하기 위해 블레이드 해석은 Blade Element and Momentum theory를 이용 하였으며, 설계 시 적용된 기저형상은 NREL에서 제안한 5MW급 풍력터빈 블레이드이다. 최적화 과정을 통해 얻어진 최적해의 집합에 대하여 L2 Norm을 통한 파레토분석을 하였으며, 이를 통해 기저형상의 연간 에너지생산량과 설비 이용률을 보다 향상 시킬 수 있었다.

  • PDF

The Comparative Study of Software Optimal Release Time Based on Log property Distribution (로그형 특성분포에 근거한 소프트웨어 최적 방출시기에 관한 비교 연구)

  • Kim, Hee-Cheul;Park, Hyoung-Keun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.149-152
    • /
    • 2010
  • 본 연구에서는 소프트웨어 제품을 개발하여 테스팅을 거친 후 사용자에게 인도하는 시기를 결정하는 방출문제에 대하여 연구되었다. 인도시기에 관한 모형은 무한 고장 수에 의존하는 비동질적인 포아송 과정을 적용하였다. 이러한 포아송 과정은 소프트웨어의 결함을 제거하거나 수정 작업 중에도 새로운 결함이 발생될 가능성을 반영하는 모형이다. 적용모형은 여러 수명 분포들을 적합시키는데 효율적인 특성을 가진 콤페르쯔, 파레토, 로그-로지스틱 모형과 같은 로그형 특성분포를 이용하였다. 따라서 소프트웨어 요구 신뢰도를 만족시키고 소프트웨어 개발 및 유지 총비용을 최소화 시키는 방출시간이 최적 소프트웨어 방출 정책이 된다. 본 논문의 수치적인 예에서는 고장 간격 시간 자료를 적용하고 모수추정 방법은 최우추정법을 이용하여 최적 방출시기를 추정하였다.

  • PDF

Value at Risk with Peaks over Threshold: Comparison Study of Parameter Estimation (Peacks over threshold를 이용한 Value at Risk: 모수추정 방법론의 비교)

  • Kang, Minjung;Kim, Jiyeon;Song, Jongwoo;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.483-494
    • /
    • 2013
  • The importance of financial risk management has been highlighted after several recent incidences of global financial crisis. One of the issues in financial risk management is how to measure the risk; currently, the most widely used risk measure is the Value at Risk(VaR). We can consider to estimate VaR using extreme value theory if the financial data have heavy tails as the recent market trend. In this paper, we study estimations of VaR using Peaks over Threshold(POT), which is a common method of modeling fat-tailed data using extreme value theory. To use POT, we first estimate parameters of the Generalized Pareto Distribution(GPD). Here, we compare three different methods of estimating parameters of GPD by comparing the performance of the estimated VaR based on KOSPI 5 minute-data. In addition, we simulate data from normal inverse Gaussian distributions and examine two parameter estimation methods of GPD. We find that the recent methods of parameter estimation of GPD work better than the maximum likelihood estimation when the kurtosis of the return distribution of KOSPI is very high and the simulation experiment shows similar results.

Confidence Intervals for High Quantiles of Heavy-Tailed Distributions (꼬리가 두꺼운 분포의 고분위수에 대한 신뢰구간)

  • Kim, Ji-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.461-473
    • /
    • 2014
  • We consider condence intervals for high quantiles of heavy-tailed distribution. The asymptotic condence intervals based on the limiting distribution of estimators are considered together with bootstrap condence intervals. We can also apply a non-parametric, parametric and semi-parametric approach to each of these two kinds of condence intervals. We considered 11 condence intervals and compared their performance in actual coverage probability and the length of condence intervals. Simulation study shows that two condence intervals (the semi-parametric asymptotic condence interval and the semi-parametric bootstrap condence interval using pivotal quantity) are relatively more stable under the criterion of actual coverage probability.

Threshold estimation for the composite lognormal-GPD models (로그-정규분포와 파레토 합성 분포의 임계점 추정)

  • Kim, Bobae;Noh, Jisuk;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.807-822
    • /
    • 2016
  • The composite lognormal-GPD models (LN-GPD) enjoys both merits from log-normality for the body of distribution and GPD for the thick tailedness of the observation. However, in the estimation perspective, LN-GPD model performs poorly due to numerical instability. Therefore, a two-stage procedure, that estimates threshold first then estimates other parameters later, is a natural method to consider. This paper considers five nonparametric threshold estimation methods widely used in extreme value theory and compares their performance in LN-GPD parameter estimation. A simulation study reveals that simultaneous maximum likelihood estimation performs good in threshold estimation, but very poor in tail index estimation. However, the nonparametric method performs good in tail index estimation, but introduced bias in threshold estimation. Our method is illustrated to the service time of an Israel bank call center and shows that the LN-GPD model fits better than LN or GPD model alone.

An Empirical Study on the Technology Innovation Distribution, Technology Imitation Distribution and New International Trade Theory (기술혁신분포, 기술모방분포 그리고 신 국제무역이론에 대한 실증연구)

  • Cho, Sang Sup;Min, Kyung Se;Cho, Byung Sun;Hwang, Ho Young
    • Journal of Korea Technology Innovation Society
    • /
    • v.21 no.2
    • /
    • pp.860-874
    • /
    • 2018
  • This study aims at empirical analysis of the new international trade theory (Melitz, 2012, 2014, 2015). The new international trade theory is centered on the effect of heterogeneous firms on the technological competitiveness on the trade effect and resulted from the important assumption that the form of the enterprise technology distribution determines the trade effect. This study empirically estimated the distribution of enterprise technology in Korean manufacturing. For the purpose of this study, we divided Korea's total enterprise technology distribution into technological innovation and technical imitation distribution, then statistically verified the distribution type and evaluated the appropriateness of the new international trade theory. Based on the empirical results of this study, we briefly suggested the direction of technology policy.

Efficient Inverter Type Compressor System using the Distribution of the Air Flow Rate (공기 변화량 분포를 이용한 효율적인 인버터타입 압축기 시스템)

  • Shim, JaeRyong;Kim, Yong-Chul;Noh, Young-Bin;Jung, Hoe-kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2396-2402
    • /
    • 2015
  • Air compressor, as an essential equipment used in the factory and plant operations, accounts for around 30% of the total electricity consumption in U.S.A, thereby being proposed advanced technologies to reduce electricity consumption. When the fluctuation of the compressed airflow rate is small, the system stability is increased followed by the reduction of the electricity consumption which results in the efficient design of the energy system. In the statistical analysis, the normal distribution, log normal distribution, gamma distribution or the like are generally used to identify system characteristics. However a single distribution may not fit well the data with long tail, representing sudden air flow rate especially in extremes. In this paper, authors decouple the compressed airflow rate into two parts to present a mixture of distribution function and suggest a method to reduce the electricity consumption. This reduction stems from the fact that a general pareto distribution estimates more accurate quantile value than a gaussian distribution when an airflow rate exceeds over a large number.

Estimation of VaR and Expected Shortfall for Stock Returns (주식수익률의 VaR와 ES 추정: GARCH 모형과 GPD를 이용한 방법을 중심으로)

  • Kim, Ji-Hyun;Park, Hwa-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.651-668
    • /
    • 2010
  • Various estimators of two risk measures of a specific financial portfolio, Value-at-Risk and Expected Shortfall, are compared for each case of 1-day and 10-day horizons. We use the Korea Composite Stock Price Index data of 20-year period including the year 2008 of the global financial crisis. Indexes of five foreign stock markets are also used for the empirical comparison study. The estimator considering both the heavy tail of loss distribution and the conditional heteroscedasticity of time series is of main concern, while other standard and new estimators are considered too. We investigate which estimator is best for the Korean stock market and which one shows the best overall performance.

Statistical frequency analysis of snow depth using mixed distributions (혼합분포함수를 적용한 최심신적설량에 대한 수문통계학적 빈도분석)

  • Park, Kyung Woon;Kim, Dongwook;Shin, Ji Yae;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1001-1009
    • /
    • 2019
  • Due to recent increasing heavy snow in Korea, the damage caused by heavy snow is also increasing. In Korea, there are many efforts including establishing disaster prevention measures to reduce the damage throughout the country, but it is difficult to establish the design criteria due to the characteristics of heavy snow. In this study, snowfall frequency analysis was performed to estimate design snow depths using observed snow depth data at Jinju, Changwon and Hapcheon stations. The conventional frequency analysis is sometime limted to apply to the snow depth data containing zero values which produce unrealistc estimates of distributon parameters. To overcome this problem, this study employed mixed distributions based on Lognormal, Generalized Pareto (GP), Generalized Extreme Value (GEV), Gamma, Gumbel and Weibull distribution. The results show that the mixed distributions produced smaller design snow depths than single distributions, which indicated that the mixed distributions are applicable and practical to estimate design snow depths.