• Title/Summary/Keyword: 파랑 탐지 알고리즘

Search Result 43, Processing Time 0.023 seconds

Target Signal Simulation in Synthetic Underwater Environment for Performance Analysis of Monostatic Active Sonar (수중합성환경에서 단상태 능동소나의 성능분석을 위한 표적신호 모의)

  • Kim, Sunhyo;You, Seung-Ki;Choi, Jee Woong;Kang, Donhyug;Park, Joung Soo;Lee, Dong Joon;Park, Kyeongju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.455-471
    • /
    • 2013
  • Active sonar has been commonly used to detect targets existing in the shallow water. When a signal is transmitted and returned back from a target, it has been distorted by various properties of acoustic channel such as multipath arrivals, scattering from rough sea surface and ocean bottom, and refraction by sound speed structure, which makes target detection difficult. It is therefore necessary to consider these channel properties in the target signal simulation in operational performance system of active sonar. In this paper, a monostatic active sonar system is considered, and the target echo, reverberation, and ambient noise are individually simulated as a function of time, and finally summed to simulate a total received signal. A 3-dimensional highlight model, which can reflect the target features including the shape, position, and azimuthal and elevation angles, has been applied to each multipath pair between source and target to simulate the target echo signal. The results are finally compared to those obtained by the algorithm in which only direct path is considered in target signal simulation.

Landslide Detection and Landslide Susceptibility Mapping using Aerial Photos and Artificial Neural Networks (항공사진을 이용한 산사태 탐지 및 인공신경망을 이용한 산사태 취약성 분석)

  • Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • The aim of this study is to detect landslide using digital aerial photography and apply the landslide to landslide susceptibility mapping by artificial neural network (ANN) and geographic information system (GIS) at Jinbu area where many landslides have occurred in 2006 by typhoon Ewiniar, Bilis and Kaemi. Landslide locations were identified by visual interpretation of aerial photography taken before and after landslide occurrence, and checked in field. For landslide susceptibility mapping, maps of the topography, geology, soil, forest, lineament, and landuse were constructed from the spatial data sets. Using the factors and landslide location and artificial neural network, the relative weight for the each factors was determinated by back-propagation algorithm. As the result, the aspect and slope factor showed higher weight in 1.2-1.5 times than other factors. Then, landslide susceptibility map was drawn using the weights and finally, the map was validated by comparing with landslide locations that were not used directly in the analysis. As the validation result, the prediction accuracy showed 81.44%.

Development of Post-Processing Software for Flow Measurement Results Analysis using RQ-30 (RQ-30을 활용한 유량 측정 결과 분석을 위한 후처리 소프트웨어 개발)

  • Geunsoo Son;JungHwan Chun;Seongcheol Kang;Youngbeen Kwon;Youngsin Roh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.420-420
    • /
    • 2023
  • 하천의 유량 자료는 하천 관리에 필수적인 요소로, 지속적인 유량측정을 위해 국가 유량 측정망을 구성하여 주요 지점을 대상으로 유량 측정을 수행하고 있다. 측정된 유량자료는 일반적으로 수위-유량 관계곡선식을 개발하여 제공되고 있으며, 홍수파와 배수 영향 등으로 인해 수위-유량 관계곡선식에서 발생하는 산포로 인한 신뢰도에 문제가 우려되는 경우에는 실시간의 정확한 유량자료를 제공하기 위해 H-ADCP를 설치하여 지표유속법 기반의 실시간 유량 자료 생산하여 제공하고 있다. 그러나 H-ADCP를 이용한 유량 측정 방법은 장비의 한계로 인해 상대적으로 규모가 작고 수심이 얕은 하천에 적용하기 어려운 문제가 있다. 따라서, 최근에는 자동유량관측소 지점 확대를 위해 비접촉식 유속계를 활용한 자동유량관측소 운영이 점차 고려되고 있다. 이에 따라 비접촉식유속계를 이용한 유량 측정 결과의 검증 및 유지 관리를 위한 소프트웨어가 필요하다. 이에 본 연구에서는 비접촉식유속계 중 전자파를 이용하여 수표면의 표면유속을 측정할 수 있는 장비인 RQ-30의 측정결과를 분석하기 위해 Microsoft Visual Studio(C#) 사용하여 측정결과의 검토 및 자료 관리를 위한 후처리 소프트웨어를 개발하였다. 개발한 소프트웨어는 측정 원시자료를 읽고, 도시하여 측정 결과를 확인할 수 있으며, 머신러닝 기반의 알고리즘을 적용하여 수위 및 유속 시계열 자료에서 발생하는 이상치를 탐색할 수 있도록 개발하였다. 그리고 탐지된 이상치에 대한 보정을 위해 선형보간, LOESS, SuperSmoother를 사용하여 이상치를 보정하여 결과를 도출할 수 있도록 개발하였다. 추후 본 연구를 통해 개발된 프로그램을 활용하여 측정 자료의 유지 관리 효율성을 증대시킬 수 있을 것으로 기대되며, 지속적인 프로그램의 개선을 통해서 실무적으로 활용이 가능할 것으로 판단된다.

  • PDF

MRF-based Adaptive Noise Detection Algorithm for Image Restoration (영상 복원을 위한 MRF 기반 적응적 노이즈 탐지 알고리즘)

  • Nguyen, Tuan-Anh;Hong, Min-Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.12
    • /
    • pp.1368-1375
    • /
    • 2013
  • In this paper, we presents a spatially adaptive noise detection and removal algorithm. Under the assumption that an observed image and the additive noise have Gaussian distribution, the noise parameters are estimated with local statistics, and the parameters are used to define the constraints on the noise detection process, where the first order Markov Random Field (MRF) is used. In addition, an adaptive low-pass filter having a variable window sizes defined by the constraints on noise detection is used to control the degree of smoothness of the reconstructed image. Experimental results demonstrate the capability of the proposed algorithm.

Determination of Weight of Landslide Related Factors using GIS and Artificial Neural Network in the Kangneung Area (원격탐사, 지리정보시스템(GIS) 및 인공신경망을 이용한 강릉지역 산사태 발생 요인의 가중치 분석)

  • 이명진;이사로;원중선
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.487-492
    • /
    • 2004
  • 본 연구에서는 인공신경망 기법을 이용하여 산사태 발생원인에 대한 가중치를 구하였다. 여름철 집중호우시 산사태가 많이 발생하는 강원도 강릉시 사천면 사기막리 와 주문진읍 삼교리에 해당한다. 산사태가 발생할 수 있는 요인으로 지형도로부터 경사, 경사방향, 곡률, 수계추출을, 정밀토양도로부터 토질, 모재, 배수, 유효토심, 지형을, 임상도로부터 임상, 경급, 영급, 밀도를, 지질도로부터 암상을, Landsat TM 영상으로부터 토지이용도와 추출하여 격자화 하였으며, 아리랑1호 영상으로부터 선구조를 추출하여 l00m 간격으로 버퍼링 한 후 격자화 하였다. 이렇게 구축된 산사태 발생 위치 및 발생요인 데이터 베이스를 이용하여 인공신경망 기법을 적용하여 산사태 발생 원인에 대한 상대적인 가중치를 구하였다. 인공신경망의 역전파 알고리즘을 이용한 사기막리 지역과 삼교리 지역의 산사태 가중치를 보면 GPS를 이용한 현장조사와 위성영상을 이용한 변화탐지 기법모두의 경우모두와 훈련지역을 실제 산사태 발생 지역과 경사도가 0°인 지역, 실제 산사태 발생 지역과 Frequence ratio를 이용하여 작성한 취약성도에서 산사태 발생이 낮을 것으로 예상되는 지역, Frequence ratio를 이용한 취약성도에서 산사태 발생이 높을 것으로 예상되는 지역 과 낮을 것으로 예상되는 지역의 경우에서도 경사도는 1.5~2.5배정도 높은 상대적 가중치를 나타냈다. 이러한 가중치는 산사태 취약성도를 작성하는데 활용될 수 있다.

  • PDF

Adaptive Digital Watermarking for Copyright Protection of Images (영상의 소유권 보호를 위한 내용 기반 적응적 디지털 워터마킹 기법)

  • Kim, Kwang-Baek;Kim, Cheol-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1A
    • /
    • pp.89-97
    • /
    • 2002
  • This paper proposes the adaptive digital watermarking method for the ownership protection of images. The watermarks are inserted to a selected area rather than a whole area. The proposed method reduces the distortion caused by the watermarking process. To select the regions, roughness of the image should be considered because the watermarks in the smooth regions are easily detected through the human eyes. To find the rough regions, Discrete Cosine Transform (DCT) method is used. Generally, the high frequency regions of images are lost by the compression process such as JPEG. So, the watermarks are inserted to the low frequency regions of a selected area by using the proposed method. The proposed method reduce the image loss or distortion brought by the image processing, such as compression, filtering, scaling, addition of noise, cropping, and wavelet transform.

Research Trend Analysis for Fault Detection Methods Using Machine Learning (머신러닝을 사용한 단층 탐지 기술 연구 동향 분석)

  • Bae, Wooram;Ha, Wansoo
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.479-489
    • /
    • 2020
  • A fault is a geological structure that can be a migration path or a cap rock of hydrocarbon such as oil and gas, formed from source rock. The fault is one of the main targets of seismic exploration to find reservoirs in which hydrocarbon have accumulated. However, conventional fault detection methods using lateral discontinuity in seismic data such as semblance, coherence, variance, gradient magnitude and fault likelihood, have problem that professional interpreters have to invest lots of time and computational costs. Therefore, many researchers are conducting various studies to save computational costs and time for fault interpretation, and machine learning technologies attracted attention recently. Among various machine learning technologies, many researchers are conducting fault interpretation studies using the support vector machine, multi-layer perceptron, deep neural networks and convolutional neural networks algorithms. Especially, researchers use not only their own convolution networks but also proven networks in image processing to predict fault locations and fault information such as strike and dip. In this paper, by investigating and analyzing these studies, we found that the convolutional neural networks based on the U-Net from image processing is the most effective one for fault detection and interpretation. Further studies can expect better results from fault detection and interpretation using the convolutional neural networks along with transfer learning and data augmentation.

A Study on the Leakage Characteristic Evaluation of High Temperature and Pressure Pipeline at Nuclear Power Plants Using the Acoustic Emission Technique (음향방출기법을 이용한 원전 고온 고압 배관의 누설 특성 평가에 관한 연구)

  • Kim, Young-Hoon;Kim, Jin-Hyun;Song, Bong-Min;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.466-472
    • /
    • 2009
  • An acoustic leak monitoring system(ALMS) using acoustic emission(AE) technique was applied for leakage detection of nuclear power plant's pipeline which is operated in high temperature and pressure condition. Since this system only monitors the existence of leak using the root mean square(RMS) value of raw signal from AE sensor, the difficulty occurs when the characteristics of leak size and shape need to be evaluated. In this study, dual monitoring system using AE sensor and accelerometer was introduced in order to solve this problem. In addition, artificial neural network(ANN) with Levenberg.Marquardt(LM) training algorithm was also applied due to rapid training rate and gave the reliable classification performance. The input parameters of this ANN were extracted from varying signal received from experimental conditions such as the fluid pressure inside pipe, the shape and size of the leak area. Additional experiments were also carried out and with different objective which is to study the generation and characteristic of lamb and surface wave according to the pipe thickness.

A Study on Performance Diagnostic of Smart UAV Gas Turbine Engine using Neural Network (신경회로망을 이용한 스마트 무인기용 가스터빈 엔진의 성능진단에 관한 연구)

  • Kong Chang-Duk;Ki Ja-Young;Lee Chang-Ho;Lee Seoung-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.213-217
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV (Unmanned Aerial Vehicle) which has been developed by KARI (Korea Aerospace Research Institute). For teaming the NN, a BPN with one hidden, one input and one output layer was used. The input layer had seven neurons of variations of measurement parameters such as SHP, MF, P2, T2, P4, T4 and T5, and the output layer used 6 neurons of degradation ratios of flow capacities and efficiencies for compressor, compressor turbine and power turbine. Database for network teaming and test was constructed using a gas turbine performance simulation program. From application results for diagnostics of the PW206C turboshaft engine using the learned networks, it was confirmed that the proposed diagnostics algorithm could detect well the single fault types such as compressor fouling and compressor turbine erosion.

  • PDF

A Study on Performance Diagnostic of Smart UAV Gas Turbine Engine using Neural Network (신경회로망을 이용한 스마트 무인기용 가스터빈 엔진의 성능진단에 관한 연구)

  • Kong Chang-Duk;Ki Ja-Young;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.15-22
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV(Unmanned Aerial Vehicle) which is being developed by KARI (Korea Aerospace Research Institute). For teeming the NN(Neural Network), a BPN(Back Propagation Network) with one hidden, one input and one output layer was used. The input layer has seven neurons: variations of measurement parameters such as SHP, MF, P2, T2, P4, T4 and T5, and the output layer uses 6 neurons: degradation ratios of flow capacities and efficiencies for compressor, compressor turbine and power turbine, respectively, Database for network teaming and test was constructed using a gas turbine performance simulation program. From application of the learned networks to diagnostics of the PW206C turboshaft engine, it was confirmed that the proposed diagnostics algorithm could detect well the single fault types such as compressor fouling and compressor turbine erosion.