DOI QR코드

DOI QR Code

Target Signal Simulation in Synthetic Underwater Environment for Performance Analysis of Monostatic Active Sonar

수중합성환경에서 단상태 능동소나의 성능분석을 위한 표적신호 모의

  • 김선효 (한양대학교 해양융합과학과 해양음향연구실) ;
  • 유승기 (LIG 넥스원(주) M&S 연구센터) ;
  • 최지웅 (한양대학교 해양융합과학과 해양음향연구실) ;
  • 강돈혁 (한국해양과학기술원 해양방위연구센터) ;
  • 박정수 (국방과학연구소) ;
  • 이동준 (LIG 넥스원(주) M&S 연구센터) ;
  • 박경주 (해군사관학교)
  • Received : 2013.08.12
  • Accepted : 2013.10.03
  • Published : 2013.11.30

Abstract

Active sonar has been commonly used to detect targets existing in the shallow water. When a signal is transmitted and returned back from a target, it has been distorted by various properties of acoustic channel such as multipath arrivals, scattering from rough sea surface and ocean bottom, and refraction by sound speed structure, which makes target detection difficult. It is therefore necessary to consider these channel properties in the target signal simulation in operational performance system of active sonar. In this paper, a monostatic active sonar system is considered, and the target echo, reverberation, and ambient noise are individually simulated as a function of time, and finally summed to simulate a total received signal. A 3-dimensional highlight model, which can reflect the target features including the shape, position, and azimuthal and elevation angles, has been applied to each multipath pair between source and target to simulate the target echo signal. The results are finally compared to those obtained by the algorithm in which only direct path is considered in target signal simulation.

능동소나는 일반적으로 천해에서 존재하는 표적을 탐지하기 위해 사용된다. 신호가 송신되고 표적으로부터 반향되어 되돌아올 때, 표적 반향신호는 다중경로, 거친 해저면 또는 해수면에 의한 산란 그리고 음속구조에 의한 굴절과 같은 다양한 음파전달 특성에 의해 왜곡 되어 수신되며, 이는 표적 탐지를 어렵게 만든다. 그러므로 능동소나의 운용성능 체계에서 표적 신호 모의 시 음파전달 특성을 고려하는 것이 필요하다. 본 논문에서는 단상태 능동소나 시스템을 고려하였으며, 표적 반향, 잔향음 그리고 주변소음은 각각 시계열 함수로 모의되었다. 마지막으로 전체 수신 신호를 모의하기 위해 위 신호들을 합하였다. 표적의 특징(형태, 위치, 자세각 등)을 반영한 3차원 대표반향점 모델은 음원과 표적 사이에 각각의 다중경로를 고려하여 표적 반향 신호를 모의하였다. 본 논문의 결과는 표적 신호 모의 시 직접파만을 고려한 알고리즘의 결과와 비교하였다.

References

  1. B. I. Kim, H. U. Lee, M. H. Park, and W. H. Kwon, "An analysis of highlight distribution modeling for high frequency CW pulse signal reflection on underwater target"(in Korean), J. Simul. Soc. Kr. 9, 1-11 (2000).
  2. B. I. Kim, H. U. Lee, and M. H. Park, "A performance analysis on the time spread highlight synthesized models for underwater active target"(in Korean), J. Military Science and Tech. Soc. Kr. 5, 37-44 (2002).
  3. T. H. Kim, J. H. Park, J. G. Nam, S. H. Lee, and K. S. Bae, "Synthesis and classification of active sonar target signal using highlight model"(in Korean), J. Acoust. Soc. Kr. 28, 135-140 (2009).
  4. H. S. Kim, K. C. Shin, W. S. Kim, D. H. Han, S. M. Choi, and J. S. Kim, "Realtime active target signal simulation"(in Korean), J. Ocean Eng. and Tech.11, 163-169 (1997).
  5. K. C. Shin, J. E. Park, J. S. Kim, S. M. Choi, and W. S. Kim, "Target scattering echo simulation for active sonar system in the geometric optics region"(in Korean), J. Acoust. Soc. Kr. 20, 91-97 (2001).
  6. K. C. Shin, J. S. Kim, W. S. Kim, W. H. Kim, and Y. Y. Kim, "A study on the acoustic scattering of submerged scale target-experiment and analysis"(in Korean), J. Ocean Eng. and Tech. 12, 92-100 (1998).
  7. M. C. Diana, "Active sonar modeling with emphasis on sonar stimulators,"DRDC Atlantic, Tech. Rep., 2004.
  8. E. K. Westwood and P. J. Vidmar, "Eigenray finding and time series simulation in a layered-bottom ocean,"J. Acoust. Soc. Am. 81, 912-924(1987). https://doi.org/10.1121/1.394571
  9. S. K. You, A Target Modeling in Synthetic Underwater Environment for Performance Analysis of Acoustic,(Ph.D. thesis, Hanyang Univ., 2012)
  10. R. J. Urick, Principle of Underwater Sound (McGraw-Hill,New York, 1983), pp. 302-308.
  11. A. Martin, Stability and Motion control of ocean vehicles (M.I.T. PRESS, 1972).
  12. C. W. Nell and L. E. Gilroy, "An improved BASIS model for the BeTSSi submarine,"DRDC Atlantic, Tech. Rep., 2003.
  13. K. Kim, J. H. Kim, D. S. Cho and W. Seong, "Applying time domain physical optics to acoustic wave backscattering problem," Appl. Acoust. 71, 321-327 (2010) https://doi.org/10.1016/j.apacoust.2009.10.006
  14. Y. H. Choi, K. C. Shin, J. S. You, J. S. Kim, W. H. Joo, Y. H. Kim, J. H. Park, S. M. Choi, and W. S. Kim, "Numerical modeling and experimental verification for target strength of submerged objects"(in Korean), J. Ocean Eng. and Tech. 19, 64-80 (2005).
  15. Y. H. Choi, J. S. Kim, K. C. Shin, J. S. You, W. H. Joo, Y. H. Kim, J. H. Park, S. M. Choi, and W. S. Kim, "Numerical analysis method for target strength and experimental verification"(in Korean), J. Acoust. Soc. Kr. Suppl. 1(s) 23, 171-174 (2004).
  16. B. Nolte, I. Schafer and J. Ehrlich, "Numerical methods for wave scattering phenomena by means of different boundary integral formulations," J. Comp. Acous. 15, 495-529 (2007). https://doi.org/10.1142/S0218396X07003536
  17. A. Eriksson, "Acoustic target strength design for sub-marines modeling and measurements,"in Proc. Undersea Defence Technology Europe (2008).
  18. B. R. Mahafza, Radar Systems Analysis and Design Using MATLAB (CHAPMAN & HALL/CRC, 2000).
  19. R. P. Hodges, Underwater Acoustics (WILEY, 2010).
  20. T. Kwan, and D. D. Ellis, "Reverberation calculations over sloping ocean bottoms,"DRDC Atlantic, Tech. Rep., 2010.
  21. R. E. Keenan, "An introduction to GRAB eigenrays and CASS reverberation and signal excess,"in Proc. OCEANS 2000MTS/IEEE Conference, 1065-1070 (2000).
  22. J. W. Choi, K. S. Yoon, J. y. Na, J. S. Park, and Y. N. Na, "Shallow water high-frequency reverberation model"(in Korean), J. Acoust. Soc. Kr. 21, 671-678 (2002).
  23. S. H. Kim, W. B. Lee, S. K. You, J. W. Choi, W. S. Kim, J. S. Park, and K. J. Park, "High-frequency Reverberation Simulation of High-speed Moving Source in Range-independent Ocean Environment"(in Korean), J. Acoust. Soc. Kr. 32, 104-115 (2013). https://doi.org/10.7776/ASK.2013.32.2.104
  24. N. C. Makris, "The effect of saturated transmissionscintillation on ocean acoustic intensity measurements," J. Acoust. Soc. Am. 100, 769-783 (1996). https://doi.org/10.1121/1.416239
  25. G. M. Wenz, "Acoustic Ambient Noise in the Ocean: Spectra and Sources,"J. Acoust. Soc. Am. 34, 1936-1956 (1962). https://doi.org/10.1121/1.1909155
  26. B. K. Choi, B. C. Kim, C. S. Kim, and B. N. Kim, "Analysis of dependence on wind speed and ship traffic of underwater ambient noise at shallow sea surrounding the Korean peninsula"(in Korean), J. Acoust. Soc. Kr. 22, 233-241 (2003).
  27. W. M. Carey and R. B. Evans, Ocean Ambient Noise - Measurement and theory(Springer, New York, 2011)
  28. B. U. Kim, K. H. Lee, W. J. Seong, and J. Y. Han, "Noise simulation and interferemce pattern analysis for submarine passive sonar"(in Korean), J. Acoust. Soc. Kr. Suppl. 2(s) 29, 11-14 (2012).
  29. C.Amante and B.W.Eakins, "Etopo1 arc-minute global relief model: procedures, data sources and analysis," NGDC, Tech. Rep., 2003.
  30. M.R.Carnes, Description and Evaluationof GDEM-V 3.0, Naval Research Laboratory, 2009.
  31. D.GROSSO, "A New Equation for the speed of sound in NaturalWaters,"J. Acoust. Soc. Am.56, 1084-1091 (1974). https://doi.org/10.1121/1.1903388
  32. J. H. Na, J. W. Choi, S. U. Son, and S. H. Kim, "Statistical characteristics analysis of sea surface reverberation signals"(in Korean), J. Acoust. Soc. Kr. Suppl. 1(s) 30, 848-851 (2011).

Cited by

  1. Modeling and Experimental Verification of Echo Characteristics of 3 Dimensional Underwater Target vol.33, pp.3, 2014, https://doi.org/10.7776/ASK.2014.33.3.174
  2. Investigation of Target Echoes in Multi-static SONAR system - Part II : Numerical Modeling with Experimental Verification vol.28, pp.5, 2014, https://doi.org/10.5574/KSOE.2014.28.5.440