• Title/Summary/Keyword: 파랑검증

Search Result 207, Processing Time 0.029 seconds

Analysis of Extreme Wave Conditions for Long-Term Wave Observation Data Considering Directionality (방향성을 고려한 장기 파랑관측자료의 극치파랑조건 분석)

  • Kim, Gunwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.700-711
    • /
    • 2022
  • In this study, deepwater design waves were estimated for 16 wave directions and various return periods based on statistical analysis of extreme waves observed for more than 20 years at three stations (Chilbal-do, Geomun-do, Donghae). These values were compared with design waves estimated based on the omni-directional wave data. The Weibull distribution was used as the probability distribution function whose parameters were determined by the least square method. The Kolmogorov-Smirnov test was applied for the goodness of fit test. Notably, the directional design waves were smaller than the omni-directional design wave for every wave direction. The maximum 50-year wave heights for directional sectors were 7.46 m (NNE), 12.05 m (S), and 9,59 m (SSW) at Chilbal-do, Geomun-do and Donghae whereas those for uni-directional wave data were 7.91 m, 13.82 m and 10.38 m, respectively. This implied possible under-estimation of the deepwater design waves for 16 wave directions being currently used in the design of offshore and coastal structures.

Development and verification of a combined method of BEM and VOF (BEM과 VOF법을 결합한 수치모델의 개발과 그 타당성 검토)

  • Kim Sang-Ho;Yamashiro Masaru;Yoshida Akinori;Hashimoto Noriaki;Lee Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.853-858
    • /
    • 2005
  • Recently, various novel numerical models based on Navier-Stokes equation have been developed for calculating wave motions in the sea with coastal or ocean structures. Among those models, Volume Of Fluid (VOF) method might be the most popular one, and it has been used for numerical simulations of wave motions including complicated phenomena of wave breakings. VOF method, however, needs enormous computation time and large computational storage memories in general, thus it is practically difficult to use this method for calculations in the case of random waves because long and stable computation (e.g for more than 100 significant wave periods) is required to obtain statistically meaningful results. On the other hand if the wave motion is potential motion, Boundary Element Method (BEM), which is a much faster and more accurate method than VOF method, can be effectively used. The aim of this study is to develop a new efficient model applicable to calculations of wave motion and/or wave-structure interactions under random waves. To achieve this, a strictly combined BEM-VOF model has been developed by making the best use of both methods' merits; VOF method is used in a restricted fluid domain around a structure where complicated phenomena of wave breakings may exist, and BEM is used in the other domains far from the disturbance where the wave motion may be assumed to be potential. The verification of the model was performed with numerical results for Stokes' 5th order wave propagation and a random wave propagation.

Control of Short-period and Solitary Waves Using Two-rowed Impermeable Rectangular Submerged Dike (2열 불투과성 사각형 잠제를 이용한 단주기파랑 및 고립파의 제어)

  • Lee, Kwang-Ho;Jung, Sung-Ho;Ha, Sun-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.203-214
    • /
    • 2010
  • This study numerically investigates the wave control of 2-rowed Impermeable Rectangular Submerged Dike(IRSD) with an object of how to control short-period and solitary waves simultaneously based on the Bragg resonance phenomenon that elevates the wave control performance. The boundary integral method using Green formula and the 3-D one-field Model for immiscible TWO-Phase flows (TWOPM-3D) by 3-D numerical wave flume have been used for the numerical predictions for short-period and solitary waves, respectively. These numerical models were verified through the comparisons with the previously published numerical results by other researchers. Through the parametric tests of numerical experiments for short-period waves, an optimum model of 2-rowed IRSD of a lowest transmission coefficient has been found. Furthermore, the performances of 3-D wave control for solitary waves were evaluated for the various free board, crown widths and gap distance between dikes, and have been compared with those of a single-rowed IRSD. Numerical results show that a 2-rowed IRSD with a less cross sectional area than 1-rowed one improves the wave attenuation performances when it is compared to that of single-rowed IRSD. Within the test frequency ranges of the numerical simulations conducted in this study, 2-rowed IRSD with an optimum gap distance shows an outstanding improvement of the wave attenuation up to 58% compared to that of single-rowed IRSD.

Development and verification of a combined method of BEM and VOF (BEM과 VOF법을 결합한 수치모델의 개발과 그 타당성 검토)

  • Kim Sang-Ho;Yannshiro Masaru;Yoshida Akinori;Hashimoto Noriaki;Lee Jong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.153-159
    • /
    • 2005
  • Recently, various novel numerical models based on Navier-Stokes equation rave been developed for calculating wave motions in the sea with coastal or ocean structures. Among those models, Volume Of Fluid (VOF) method might be the most popular one, and it has been used for numerical simulations of wave motions including complicated phenomena of wave breakings. VOF method, however, needs enormous computation time and large computational storage memories in general, thus it is practically difficult to use VOF method for calculations in the case of random waves because long and stable computation ( e.g. for more than 100 significant wave periods) is required to obtain statistically meaningful results. On the other hand of the wave motion is potential motion, Boundary Element Method (BEM), which is a much faster and more accurate method than VOF method, am be effectively used. The aim of this study is to develop a new efficient model applicable to calculations of wave motion and/or wave-structure interactions under random waves. To achieve this, a strictly combined BEM-VOF model has been developed by making the best use of both methods' merits; VOF method is used in a restricted fluid domain around a structure where complicated phenomena of wave breakings may exist, and BEM is used in the other domains far from the disturbance where the wave motion may be assumed to be potential. The verification of the model was performed with numerical results for Stokes'5th order wave propagation and a random wave propagation.

  • PDF

Design and Verification of a Wave Gauge Using Digital Images (디지털 영상을 이용한 파고계 개발 및 검증)

  • Kim Taerim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.171-177
    • /
    • 2004
  • A new wave gauge using digital image of waves is developed and the performances are tested by wave tank experiments. This wave gauge uses frame frequency of 1/15 sec, conversion of analog images to digital images, and large capacity of hard disk. This wave gauge measures wave heights by detecting the buoy movement automatically from the image, where the buoy moves with the same phase of water surface. The comparison of automatic measurements of wave heights to the true data is reasonable. The wave gauge can be improved to measure wave heights on shallow waters near shorelines.

A Sigma-Coordinate Scalar Transport Model Coupled with Boussinesq Equations (${\sigma}$-좌표계 기반의 혼합 모형과 Boussinesq Equations 모형의 연계)

  • Kim, Dae-Hong;Lynett, Patrick
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.218-222
    • /
    • 2010
  • 본 연구에서는 ${\sigma}$-좌표계를 기반으로 하는 3차원의 이송확산 모형과 depth-integrated eddy simulation 모형을 결합한 효율적인 3차원 근역 (near-field) 해석모형을 제시하였다. 흐름 모형은 Boussinesq-type equations과 stochastic backscatter model을 기본으로 하고 있다. 이 흐름 모형은 수면의 변화와 바닥으로부터 발생하는 전단력과 파랑의 유동으로부터 발행하는 수심방향의 유속분포를 예측할 수 있다. 이와 같은 흐름 정보를 3차원 ${\sigma}$-좌표계의 이송확산모형에 제공하고 scalar의 이송과 확산에 대한 거동을 계산한다. 기본적인 이송과 이송-확산에 대한 검증 및 개수로에서 정량적 검증과 정성적 검증을 수행하였다. 전반적으로 타당한 결과가 도출되어 모형의 적합성이 있음을 확인하였다.

  • PDF

A Review on the Beta-Rayleigh Distribution (Beta-Rayleigh 분포에 대한 소고)

  • 박은진;한상대;편종근
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1992.08a
    • /
    • pp.100-105
    • /
    • 1992
  • Hughes와 Borgman(1987)이 천해파고의 특성을 잘 나타낼 수 있는 통계적 표현으로 Beta-Rayleigh 분포를 제안하였다. 본 고에서는 기존의 파랑이론을 이용하여 천해파의 특성을 재조명하여 Beta-Rayleigh 분포의 출발점을 확인하고 Beta-Rayleigh 분포가 갖는 상한조건인 H$_{b}$가 무한대가 되면 Rayleigh 분포로 되어버리는 수학적인 과정을 밝힌 후 현장관측치를 통한 검증을 해보고자 한다.(중략)

  • PDF

A Fuzzy Logic-based Color Estimation System (퍼지 이론을 이용한 색체혼합 시스템 구성)

  • 김민철;이명원;권순학;이달해
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.115-119
    • /
    • 1997
  • 본 논문은 색료의 삼원색인 빨강, 노랑 및 파랑을 적절히 혼합하는 경우에 나타나는 색채를 추론하는 문제에 대하여, 퍼지이론을 적용하여 결과를 추론하는 문제를 다루고 있다. 즉, 인간이 색료의 혼합에 있어서 행하는 과정을 모사한 퍼지규칙을 바탕으로 삼원색의 색료가 일정 분량씩 혼합된 경우, 결과적으로 나타나는 색을 직접 실험을 통하지 않고 추론할 수 있는 시스템을 구축하고 있다. 또한, 구축된 시스템에 대하여 여러 가지 예를 통한 모의 실험을 수행하여 본 연구에서 구축된 색채혼합 시스템의 타당성을 검증하였다.

  • PDF

동해상의 해상풍 파랑에 관한 연구

  • Choe, Jeong-Bu;Sim, Jae-Seon;Kim, Gwang-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1984.07a
    • /
    • pp.69-73
    • /
    • 1984
  • 본 연구는 현업부서에서 손쉽게 적용할 수 있는 종관적인 객관적 예보 방법을 개발하기 위하여 동해역을 16개 격자점으로 구성된 격자망을 설정, 각 격자점별로 해상풍과 파고를 산출하여 해상풍 및 파고 분석도를 작성하는 방법을 제시하였다. 실측 치와 계산치를 검증 해 본 결과, 해상풍에 있어서는 1:1로 잘 대응되고 있으며 상관 계수도 평균 0.70 이상의 좋은 결과를 얻었고, 파고 에 있어서는 평균 0.5m 미만의 오차 범위를 보였다.

  • PDF

Frequency Domain Analysis for Dynamic Response of Floating Structures Subject to Wave Loading (파랑하중을 받는 부유식 구조물의 동적거동에 대한 주파수영역 해석)

  • Kwon Jang Sub;Paik In Yeol;Park Jung Il;Chang Sung Pil
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.138-148
    • /
    • 2005
  • Dynamic response of floating structures such as floating body and floating bridges subject to wave load is to be calculated in frequency domain. Added mass coefficient, damping coefficient and wave exciting force are obtained numerically from frequency domain formulation of linear potential theory and boundary element method for a floating body which is partially submerged into water and subjected to wave force. Next, the equation of motion for the dynamic behavior of a floating structure which is supported by the floating bodies and modeled with finite elements is written in frequency domain. hker a hemisphere is analyzed and compared with the published references as examples of floating bodies, the hydrodynamic coefficients for a pontoon type floating body which supports a floating bridge are determined. The dynamic response of the floating bridge subject to design wave load can be solved using the coefficients obtained for the pontoons and the results are plotted in the frequency domain. It can be seen from the example analysis that although the peak frequency of the incoming wave spectrum is near the natural frequency of the bridge, the response of the bridge is not amplified due to the effect that the peak frequency of wave exciting force is away from the natural frequency of the bridge.