• 제목/요약/키워드: 파라미터 선정

Search Result 283, Processing Time 0.03 seconds

Infrared Reflector Design using the Phase Field Method for Infrared Stealth Effect (적외선 피탐지를 위한 페이즈 필드법 기반의 적외선 반사층 설계)

  • Heo, Namjoon;Yoo, Jeonghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.63-69
    • /
    • 2015
  • In this paper, infrared reflector design targeting infrared stealth effect is presented using structural optimization based on the phase field method. The analysis model was determined to accomplish the design that an incident infrared wave was reflected to a desired direction. The design process was to maximize the objective value at the measuring domain located in a target region and the design objective was set to the Poynting vector value which represents the energy flux. Optimization results were obtained according to the variation of some parameter values related to the phase field method. The model with a maximum objective value was selected as the final optimal model. The optimal model was modified to eliminate the gray scale using the cut-off method and it confirmed improved performance. In addition, to check the desired effect in the middle wave infrared range(MWIR), the analysis was performed by changing the input wavelength. The finite element analysis and optimization process were performed by using the commercial package COMSOL combined with the Matlab programming.

An Effective Method for Selection of WGN Band in Man Made Noise(MMN) Environment (인공 잡음 환경하에서의 효율적인 백색 가우시안 잡음 대역 선정 방법)

  • Shin, Seung-Min;Kim, Young-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1295-1303
    • /
    • 2010
  • In this paper, an effective method has been proposed for selection of white Gaussian noise(WGN) band for radio background noise measurement system under broad band noise environment. MMN which comes from industrial devices and equipment mostly happens in the shape of broad band noise mostly like impulsive noise and this is the main reason for increasing level in the present radio noise measurements. The existing method based on singular value decomposition has weak point that it cannot give good performance for the broad band signal because it uses signal's white property. The proposed method overcomes such a weakness of singular value decomposition based method by using signal's Gaussian property based method in parallel. Moreover, this proposed method hires a modelling based method which uses parameter estimation algorithm like maximum likelihood estimation(MLE) and gives more accurate result than the method using amplitude probability distribution(APD) graph. Experiment results under the natural environment has done to verify feasibility of the proposed method.

Estimate of Simulation for Recent Typhoons (최근 태풍의 Simulation 평가)

  • Oh, Jong Seop
    • Journal of Korean Society of Disaster and Security
    • /
    • v.8 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • This study is concerned with the estimation of fluctuation wind velocity spectrum and turbulence characteristics in the major cities reflecting the recent meteorological with typhoon wind velocity about 2003 (Maemi) 2010 (Kompasu) 2012 (Tembin). The purpose of this paper is to present spectral analysis for longitudinal component fluctuating velocity obtained by Monte Carlo Simulation method. In the processes of analysis, the longitudinal velocity spectrums are compared widely used spectrum models with horizontal wind velocity observations data obtained at Korea Meteorological Adminstration (KMA) and properties of the atmospheric air for typhoon fluctuating wind data are estimated to parameters with turbulency intensity, shear velocity, probability distribution and roughness length.

A Study on the Probability distribution of Recent Annal Fluctuating Wind Velocity (최근 연최대변동풍속의 확률분포에 관한 연구)

  • Oh, Jong Seop;Heo, Seong Je
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • This study is concerned with the estimation of fluctuate wind velocity statistic properties in the major cities reflecting the recent meteorological with largest data samples (yearly 2003-2012). The basic wind speeds were standardized homogeneously to the surface roughness category C, and to 10m above the ground surface. The estimation of the extreme of non-Gaussian load effects for design applications has often been treated tacitly by invoking a conventional wind design (gust load peak factor) on the basis of Gaussian processes. This assumption breaks down when the loading processes exhibits non-Gaussianity, in which a conventional wind design yields relatively non conservative estimates because of failure to include long tail regions inherent to non-Gaussian processes. This study seeks to ascertain the probability distribution function from recently wind data with effected typhoon & maximum instantaneous wind speed.

A Selection Method of Backbone Network through Multi-Classification Deep Neural Network Evaluation of Road Surface Damage Images (도로 노면 파손 영상의 다중 분류 심층 신경망 평가를 통한 Backbone Network 선정 기법)

  • Shim, Seungbo;Song, Young Eun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.106-118
    • /
    • 2019
  • In recent years, research and development on image object recognition using artificial intelligence have been actively carried out, and it is expected to be used for road maintenance. Among them, artificial intelligence models for object detection of road surface are continuously introduced. In order to develop such object recognition algorithms, a backbone network that extracts feature maps is essential. In this paper, we will discuss how to select the appropriate neural network. To accomplish it, we compared with 4 different deep neural networks using 6,000 road surface damage images. Based on three evaluation methods for analyzing characteristics of neural networks, we propose a method to determine optimal neural networks. In addition, we improved the performance through optimal tuning of hyper-parameters, and finally developed a light backbone network that can achieve 85.9% accuracy of road surface damage classification.

Analysis of Attacks and Security Level for Multivariate Quadratic Based Signature Scheme Rainbow (다변수 이차식 기반 서명 기법 Rainbow의 공격 기법 및 보안강도 분석)

  • Cho, Seong-Min;Kim, Jane;Seo, Seung-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.533-544
    • /
    • 2021
  • Using Shor algorithm, factoring and discrete logarithm problem can be solved effectively. The public key cryptography, such as RSA and ECC, based on factoring and discrete logarithm problem can be broken in polynomial time using Shor algorithm. NIST has been conducting a PQC(Post Quantum Cryptography) standardization process to select quantum-resistant public key cryptography. The multivariate quadratic based signature scheme, which is one of the PQC candidates, is suitable for IoT devices with limited resources due to its short signature and fast sign and verify process. We analyzes classic attacks and quantum attacks for Rainbow which is the only multivatiate quadratic based signature scheme to be finalized up to the round 3. Also we compute the attack complexity for the round 3 Rainbow parameters, and analyzes the security level of Rainbow, one of the PQC standardization candidates.

Analysis of Photoplethysmographic Waveform for Assessment of Pulpal Blood Flow in Children (소아 환자의 치수 혈류 평가를 위한 광용적맥파 파형 분석)

  • Kim, Hyo-Eun;Shin, Teo Jeon;Kong, Hyoun-Joong;Kim, Pil-Jong;Hyun, Hong-Keun;Kim, Young-Jae;Kim, Jung-Wook;Jang, Ki-Taeg;Kim, Chong-Chul;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.2
    • /
    • pp.158-165
    • /
    • 2016
  • The purpose of this study was to analyze photoplethysmographic waveforms from pulse oximeter using raw data of red and infrared light and investigate the reference values of parameters (Height, Width50, Maximum slope, Minimum slope, Area) for evaluating pulpal blood flow in maxillary central incisors with normal pulp vitality in children. The study was performed in 30 pediatric patients, aged 7-16 years old, using pulse oximeter (MEKICS Co., Ltd, Korea) combined with a custom-made sensor. The raw data was obtained and recorded by custom-made software and analyzed by LabChart (v.7.3, ADInstruments, Germany) offline. In this study, we analyzed photoplethysmographic waveforms from pulse oximeter applied to maxillary central incisor for assessment of pulpal blood flow and suggested several reference values of young permanent maxillary central incisor with normal pulp. On average, the waveform of red light was higher, stiffer and wider than that of infrared light. Future studies about reference values for other normal teeth and the teeth with impaired pulp vitality are needed.

Design of X-band 40 W Pulse-Driven GaN HEMT Power Amplifier Using Load-Pull Measurement with Pre-matched Fixture (사전-정합 로드-풀 측정을 통한 X-대역 40 W급 펄스 구동 GaN HEMT 전력증폭기 설계)

  • Jeong, Hae-Chang;Oh, Hyun-Seok;Yeom, Kyung-Whan;Jin, Hyeong-Seok;Park, Jong-Sul;Jang, Ho-Ki;Kim, Bo-Kyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1034-1046
    • /
    • 2011
  • In this paper, a design and fabrication of 40 W power amplifier for the X-band using load-pull measurement of GaN HEMT chip are presented. The adopted active device for power amplifier is GaN HEMT chip of TriQuint company, which is recently released. Pre-matched fixtures are designed in test jig, because the impedance range of load-pull tuner is limited at measuring frequency. Essentially required 2-port S-parameters of the fixtures for extraction optimal input and output impedances is obtained by the presented newly method. The method is verified in comparison of the extracted optimal impedances with data sheet. The impedance matching circuit for power amplifier is designed based on EM co-simulation using the optimal impedances. The fabricated power amplifier with 15${\times}$17.8 $mm^2$ shows the efficiency above 35 %, the power gain of 8.7~8.3 dB and the output power of 46.7~46.3 dBm at 9~9.5 GHz with pulsed-driving width of 10 usec and duty of 10 %.

A Propose on the Propagation Prediction Model for Service in the Sea of CDMA Mobile Communication (CDMA 이동통신의 해상 서비스를 위한 전파예측모델 제안)

  • Kim, Young-Gon;Park, Chang-Kyun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.6
    • /
    • pp.106-112
    • /
    • 2001
  • Unfortunately, the area without economical efficiency, especially the far distance sea, is much lower than that of a urban area-built-up area. It should be promoted the equivalent level to a urban area in the light of future-oriented universal service. Actually, Because propagation environment of mobile communication in the sea is greatly different from that for inland focused on built-up area, a propagation prediction model in the sea should be distinguished from inland-based one. Accordingly, the purpose of this study is to suggest the propagation prediction model for the sea service as a method to minimize unnecessary facilities investment and maintenance caused by additional or new building of a base station. If mobile phone service for far distance sea is provided by expanding limited communication zone of narrow band CDMA mobile communication whose spread band FA is 1.2288MHz. Suggested propagation prediction model includes five parameters to minimize facilities investment of a base station and maximize channel capacity: equivalent line of sight, chip delay by PN code, antenna altitude, power of base station and gain of antennas. Finally, suggested propagation prediction model is simulated and, the results are examined for its utility by comparing with loss of free space.

  • PDF

Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2) (스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2))

  • Park, Jung-Wook;Guglielmi, Yves;Graupner, Bastian;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.197-213
    • /
    • 2019
  • We simulated the fault reactivation experiment conducted at 'Main Fault' intersecting the low permeability clay formations of Mont Terri Underground Research Laboratory in Switzerland using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. We formulate the hydro-mechanical coupling relation of hydraulic aperture to consider the elastic fracture opening and failure-induced dilation for reproducing the abrupt changes in injection flow rate and monitoring pressure at fracture opening pressure. A parametric study was conducted to examine the effects of in-situ stress condition and fault deformation and strength parameters and to find the optimal parameter set to reproduce the field observations. In the best matching simulation, the fracture opening pressure and variations of injection flow rate and monitoring pressure showed good agreement with field experiment results, which suggests the capability of the numerical model to reasonably capture the fracture opening and propagation process. The model overestimated the fault displacement in shear direction and the range of reactivated zone, which was attributed to the progressive shear failures along the fault at high injection pressure. In the field experiment results, however, fracture tensile opening seems the dominant mechanism affecting the hydraulic aperture increase.