Abstract
In this paper, an effective method has been proposed for selection of white Gaussian noise(WGN) band for radio background noise measurement system under broad band noise environment. MMN which comes from industrial devices and equipment mostly happens in the shape of broad band noise mostly like impulsive noise and this is the main reason for increasing level in the present radio noise measurements. The existing method based on singular value decomposition has weak point that it cannot give good performance for the broad band signal because it uses signal's white property. The proposed method overcomes such a weakness of singular value decomposition based method by using signal's Gaussian property based method in parallel. Moreover, this proposed method hires a modelling based method which uses parameter estimation algorithm like maximum likelihood estimation(MLE) and gives more accurate result than the method using amplitude probability distribution(APD) graph. Experiment results under the natural environment has done to verify feasibility of the proposed method.
본 논문에서는 광대역 특성을 갖는 잡음 환경에서 전파 배경 잡음 측정 시스템의 효과적인 측정을 위한 백색 가우시안 잡음 대역 선정 방법을 제안한다. 산업기기들로부터 발생하는 인공 잡음은 주로 광대역으로 발생하는 임펄스성 잡음으로 현대 잡음 레벨 증가의 주 요소이다. 기존의 특이값 분해에 기반한 방법은 주로 백색 스펙트럼 성질에 기초하여 판별하는 방법으로 광대역 신호에 대하여 그 성능을 효과적으로 내지 못하는 단점이 있다. 제안된 방법은 특이값 분해 기반 방법을 가우시안 특성 기반 방법과 병행함으로써 광대역 환경에서도 백색 가우시안 잡음 대역을 효과적으로 판단할 수 있는 성능을 제공한다. 또한, 가우시안 특성 기반 방법으로써 신호강도 확률 분포 그래프 이용 방법이 갖고 있는 판정의 정확도를 개선하는 모델링을 통한 파라미터 추정 기반 방법을 제시하였다. 제안된 방법의 효율성을 입증하기 위하여 실제 측정 시스템에서 획득한 데이터에 적용하여 제안 방법이 광대역 환경에서 기존의 방법에 비하여 우수함을 보였다.