• Title/Summary/Keyword: 파단모드

Search Result 70, Processing Time 0.022 seconds

Evaluation of weldability of Al 6061 and 5052 alloy by using GMAW and Plasma-GMA welding (GMAW, Plasma-GMA Hybrid 용접을 이용한 Al 5052, 6061 합금의 용접성 평가)

  • Ahn, Young-Nam;Kim, Cheol-Hee;Choi, Jin-Kang
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.42-42
    • /
    • 2010
  • 알루미늄 합금은 질량 대비 강도가 우수하고 내식성 및 저온 특성이 양호하여 구조재로서 널리 사용되고 있다. 또한 그 사용 추세가 점점 증가 하고 있으며 알루미늄 합금의 용접을 위해 현재까지 다양한 용접 공정이 적용되었다. 일반적으로 GMAW, GTAW 등의 아크 용접과 박판의 경우 저항 점용접, 그 외의 $CO_2$ laser, Nd:YAG laser와 같은 고밀도 에너지 용접 공정에 의한 연구 결과들이 많이 발표 되었다. 하지만 알루미늄 합금의 특성 상 용접부에 기공과 균열과 같은 결함들이 각 공정에서 많이 발생하며 이러한 결함을 감소시키기 위한 용접기술에 관해 많은 연구가 진행되고 있다. 본 연구에서는 GMAW, Plasma-GMAW 공정을 적용하여 알루미늄 합금의 용접특성을 비교하였다. 알루미늄 합금 Al 5052, Al 6061 4mm 두께 모재에 대해 BOP(Bead On Plate) 용접실험을 실시하였으며 생산성 측면에서 각 공정에 따라 완전 용입 시 최대 용접 속도를 측정하여 비교하였다. 용접 품질 측면에서는 비드 표면 및 단면을 검사하고 인장시험을 수행하였으며, 용접 기공과 균열을 X-ray 촬영을 통해 비교하였다. 또한 고속카메라 촬영을 통해 용접 중 플라즈마로 인한 산화막 제거 효과를 확인하고 각 공정별 용접 시작부의 아크 안정성을 평가하였다. 인장시험 결과 모든 모드에서 모재에서 파단됨을 확인 하였고, Plasma-GMAW 공정의 경우 플라즈마의 예열효과로 인하여 GMAW 보다 완전용입 기준 용접속도가 빨랐으며, 청정작용도 우수한 것으로 확인되었다.

  • PDF

Mechanical Reliability Evaluation of Sn-37Pb Solder/Cu and Sn-37Pb Solder/ENIG Joints Using a High Speed Lap-shear Test (고속 전단시험법을 이용한 Sn-37Pb/Cu 와 Sn-37Pb/ENIG 솔더 접합의 기계적신뢰성 평가)

  • Jeon, Seong-Jae;Hyun, Seung-Min;Lee, Hoo-Jeong;Lee, Hak-Joo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.250-255
    • /
    • 2008
  • This study utilized a high speed lap-shear test to evaluate the mechanical behavior of Sn-37Pb/Cu and Sn-37Pb/Electroless Nickel immersion Gold under bump metallization solder joints under high speed loading and hence the drop reliability. The samples were aged for 120 h at different temperatures ($120^{\circ}C,\;150^{\circ}C,\;170^{\circ}C$) and afterward tested at different displacement rates (0.01 mm/s to 500 mm/s) to examine the effects of aging on the drop life reliability. The combination of the stress-strain graphs captured from the shear tests and identifying a fracture mode dominant in the samples for different strain rates leads us to conclude that the drop reliability of solder joints degrades as the aging temperature increases, possibly due to the role of the IMC layer. This study successfully demonstrates that the analysis based on a high speed lap-shear test could be critically used to evaluate the drop reliability of solder joints.

  • PDF

A Study on Fatigue Crack Propagation of Random Short Fiber SMC Composite (非規則性 短纖維强化 SMC複合材料의 疲勞龜裂 進展에 관한 硏究)

  • 김광수;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.87-95
    • /
    • 1989
  • The fatigue crack propagation of random short fiber SMC composite material was investigated. In macroscopic viewpoint, SMC composite material was treated as isotropic material and was analyzed in terms of conventional fracture mechanics. Experiments were conducted on mode I and mixed respectively and various loading level was applied to each mode. Fatigue crack growth can be explained in three steps and most of fatigue life is consumed in initial crack growth. In this experiments, power law, i.e, da/dN=C(C.DELTA.K)$^{m}$ , between fatigue crack growth rate and stress intensity factor range, was valid and the value of the exponent m is about 10, which is much higher than that of other metals. Fracture mechanism was also investigated by SEM fractographic study.

초내식성 오스테나이트계 스테인리스강의 증기발생기 전열관 적용가능성 평가

  • 김택준;박용수;김영식
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.201-206
    • /
    • 1997
  • 본 연구에서는 Ni-기 합금인 합금 600과 합금 690, Fe-기 합금인 합금 800 및 초내식성 오스테나이트계 스테인리스강인 SR-50A에 대하여 부식 환경의 변화에 따른 특성 평가를 행하였다. 전기화학적 부식 평가는 양극 분극 시험을 통하여 행하였으며 부식 환경은 NaCl, HCI, NaOH(+$Na_2$SO$_4$) 액이었다. 응력 부식 균열 시험으로는 CERT(Constant Extension Rate Test)를 행하였으며 부식환경은 40%NaOH, 40%OH+12%$Na_2$SO$_4$ 용액이었다. CERT시험 후 그 파면을 SEM관찰하여 파괴 양상을 관찰하였다. 각 합금의 양극 분극 특성을 부식 환경에 따라 평가한 결과, 부식 용액의 증류에 따라 서로 다른 분극 거동을 보이고 있는데 산성과 중성 용액에서는 SR-50A가 가장 큰 저항성을 보이는 반면, 강 알카리용액인 NaOH용액에서는 Ni-기 합금의 저항성이 Fe-기 합금의 저항성보다 우수하게 나타났다. 응력 부식 균열 저항성은 전반적으로 Fe-기 합금보다 Ni-기 합금이 우수하게 나타났다. 파단면을 SEM관찰한 결과 합금 800과 SR-50A(tube)는 용액에 관계없이 입내 파괴 모드를 나타내고 있으며, 합금 600과 SR-50A판재는 입계 파괴 양상을 보이고 있다. 또한 가성 용액 중에 $Na_2$SO$_4$를 첨가할 경우, 부식 속도를 가속화시키고 응력 부식 균열 저항성을 감소시키고 있다.

  • PDF

Reliability of Sn-Ag-Cu Solder Joint on ENEPIG Surface Finish: 1. Effects of thickness and roughness of electroless Ni-P deposit (ENEPIG 표면처리에서의 Sn-Ag-Cu 솔더조인트 신뢰성: 1. 무전해 Ni-P도금의 두께와 표면거칠기의 영향)

  • Huh, Seok-Hwan;Lee, Ji-Hye;Ham, Suk-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 2014
  • By the trends of electronic package to be smaller, thinner and more integrative, the reliability of interconnection between Si chip and printed circuit board is required. This paper reports on a study of high speed shear energy of Sn-4.0wt%Ag-0.5wt%Cu (SAC405) solder joints with different the thicknesses of electroless Ni-P deposit. A high speed shear testing of solder joints was conducted to find a relationship between the thickness of Ni-P deposit and the brittle fracture in electroless Ni-P deposit/SAC405 solder. A focused ion beam (FIB) was used to polish the cross sections to reveal details of the microstructure of the fractured pad surface with and without $HNO_3$ vapor treatment. The high speed shear energy of SAC405 solder joint with $1{\mu}m$ Ni-P deposit was found to be lower without $HNO_3$ vapor, compared to those of over $3{\mu}m$ Ni-P deposit. This could be due to the edge of solder resist in $1{\mu}m$ Ni-P deposit, which provides a fracture location for the weakened shear energy of solder joints and brittle fracture in high speed shear test. With $HNO_3$ vapor, the brittle fracture mode in high speed shear test decreased with increasing the thickness of Ni-P deposit. Then the roughness (Ra) of Ni-P deposits decreased with increasing its thickness. Thus, this gives the evidence that the decrease in roughness of Ni-P deposit for Eelectroless Ni/ Electroless Pd/ Immersion Au (ENEPIG) surface play a critical role for improving the robustness of SAC405 solder joint.

Failure Mode and Failure Strength of Homogeneous Metals & Dissimilar Metals Bonded Single Lap-Shear Joints (동종금속 및 이종금속 단일 겹침 접착 시편의 파손모드 및 파손강도에 관한 연구)

  • Park, Beom Chul;Chun, Heoung-Jae;Park, Jong Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this paper, the experimental study and finite elements analysis were conducted on homogeneous and dissimilar metals single lap-shear bonded joints to investigate the factor that affect the joint failure load. It was found that factors which have the significant effects on the failure load of the joint was stiffness of the adherends. And from experimental results, it can be confirmed that the failure load increases linearly with overlap length increases. And the failure load of dissimilar metal joints is approximately 1KN(10~17%) larger than homogeneous metal joints. In order to confirm this phenomenon, the stress distribution and strain distribution of the specimens were analyzed through the finite element analysis. The difference between homogeneous metals joints and dissimilar metals joints is that stress and strain in adhesive are concentrated at the end of the overlap zone close to aluminium which has lower rigidity than aluminium in case of dissimilar metals joints. From high rigidity of steel, the stress concentration in bonds are decreased and it cause increase of the failure strength at dissimilar metal joints.

Prediction of Structural Behavior of FRP Rebar Reinforced Concrete Slab based on the Definition of Limit State (한계상태 정의에 따른 FRP Rebar 보강 콘크리트 슬래브의 구조거동 예측)

  • Oh, Hongseob;Kim, Younghwan;Jang, Naksup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.371-381
    • /
    • 2020
  • The failure mode of concrete reinforced with FRP is defined as the concrete crushing and the fiber rupture and the definition of limit state is a slightly different according to the design methods. It is relatively difficult to predict of FRP reinforced concrete because the mechanical properties of fibers are quite depending on its of fibers. The design code by ACI440 committee, which has been developed mainly on GFRP having low modulus of elasticity, is widely used, but the applicability on other FRPs of this code has not been sufficiently verified. In addition, the ultimate and serviceability limit state based on the ACI440 are comparatively difficult to predict the behavior of member with the 0.8~1.2 𝜌b because crushing and rupturing failure can be occurred simultaneously is in this region of reinforcement ratio, and predicted deflection is too sensitive according to the loading condition. Therefore, in this study, reliability and convenience of the prediction of structural performance by design methods such as ACI440 and MC90 concept, respectively, were examined through the experimental results and literature review of the beam and slab with the reinforcement ratio of 0.8 ~ 1.4. As a result of the analysis, it can be applied to the FRP reinforced structure in the case of the simple moment-curvature formula (LIM-MC) of Model Code, and the limit state design method based on the EC2 is more reliable than the ultimate strength design method.

Seismic Performance of Circular RC Columns Retrofitted Using Ductile PET Fibers (고연성 PET 섬유로 보강된 철근콘크리트 원형 기둥의 내진성능)

  • Vachirapanyakun, Sorrasak;Lim, Myung-Kwan;Choi, Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.289-298
    • /
    • 2016
  • An experimental research was performed using fibers for the purpose of retrofitting existing reinforced concrete circular columns. Glass fiber (GF) and polyethylene terephthalate (PET) were used as well as combined GF+PET (HF). PET has high tensile strength (over 600 MPa) and high ductility (about 15%), but has very low elastic modulus (about 1/6 of GF). A total of four columns was tested against laterally applied reverse cyclic load: control column, GF-, PET-, and HF-strengthened columns. All columns retrofitted using fibers demonstrated improved moment capacity and ductility. Moment capacity of GF-, PET-, and HF-strengthened columns was 120%, 107%, and 120% of the control column, respectively. Drift ratio of all retrofitted columns also increased by 63 ~ 83% over the control column. The final failure mode of the control column was main bar buckling. The final failure mode of the GF- and HF-strengthened columns was GF rupture while that of the PET-strengthened column was main bar rupture in tension. No damage was observed for PET at the ultimate stage due to excellent strain capacity intrinsic to PET. Current test results indicate that PET can be effectively used for seismic retrofit of RC columns. It is noted that the durability characteristics of PET needs to be investigated in the future.

Performance Evaluation of Bending Strength of Curved Composite Glulams Made of Korean White Pine (잣나무 만곡 복합집성재의 휨강도 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.463-469
    • /
    • 2015
  • In this study, to improve bending strength performance of Korean white pine, we made the curved composite glulam that was reinforced with glass fiber materials and larch lamina. Five types of Korean white pine curved glulams were made depending on whether they had been reinforced or not and how they had been reinforced. Type-A, reference specimen, was produced only with Korean white pine lamina, and Type-B was with larch lamina in the same thickness. Type-C was made by inserting a glass fiber cloth of textile shape between the each layer. Type-D was reinforced with two glass fiber cloths, which were placed inside and outside of the outermost lamina. Type-E was reinforced with GFRP sheet in the same way as Type-D. As a result of this bending strength test, the modulus of rupture (MOR) of Type-B, Type-C and Type-E were increased by 29%, 6%, and 48% in comparison with Type-A. However, MOR of Type-D was decreased by 2% in comparison with Type-A. In the failure modes, Type-A, Type-B and Type-C were totally fractured at the maximum load. However, load values of Type-D and Type-E decreased slowly because of reinforcement of fracture suppression, and the GFRP sheet (Type-E) had better reinforcing effect on compressive stress and tensile stress than the glass fiber cloth (Type-D).

Effect of Chemical Composition of Nut Material on the Fracture Behavior in Nut Projection Welding of Hot-Stamped Steel Sheet (핫스탬핑강의 너트 프로젝션 용접시 너트 재질이 용접부 파단모드 변화에 미치는 영향)

  • Lim, Sung-Sang;Kim, Young-Tae;Chun, Eun-Joon;Nam, Ki-Sung;Park, Young-Wan;Kim, Jae-Wan;Lee, Sun-Young;Choi, Il-dong;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • The use of materials for modern lightweight auto-bodies is becoming more complex than hitherto assemblies. The high strength materials nowadays frequently used for more specific fields such as the front and rear sub frames, seat belts and seats are mounted to the assembled body structure using bolt joints. It is desirable to use nuts attached to the assembled sheets by projection welding to decrease the number of loose parts which improves the quality. In this study, nut projection welding was carried out between a nut of both boron steel and carbon steel and ultra-high strength hot-stamped steel sheets. Then, the joints were characterized by optical and scanning electron microscope. The mechanical properties of the joints were evaluated by microhardness measurements and pullout tests. An indigenously designed sample fixture set-up was used for the pull-out tests to induce a tensile load in the weld. The fractography analysis revealed the dominant interfacial fracture between boron steel nut weld which is related to the shrinkage cavity and small size fusion zone. A non-interfacial fracture was observed in carbon steel nut weld, the lower hardness of HAZ caused the initiation of failure and allowed the pull-out failure which have higher in tensile strengths and superior weldability. Hence, the fracture load and failure mode characteristics can be considered as an indication of the weldability of materials in nut projection welding.