• Title/Summary/Keyword: 특징 형상 복원

Search Result 36, Processing Time 0.026 seconds

Analysis of Geometrical Relations of 2D Affine-Projection Images and Its 3D Shape Reconstruction (정사투영된 2차원 영상과 복원된 3차원 형상의 기하학적 관계 분석)

  • Koh, Sung-Shik;Zin, Thi Thi;Hama, Hiromitsu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, we analyze geometrical relations of 3D shape reconstruction from 2D images taken under anne projection. The purpose of this research is to contribute to more accurate 3-D reconstruction under noise distribution by analyzing geometrically the 2D to 3D relationship. In situation for no missing feature points (FPs) or no noise in 2D image plane, the accurate solution of 3D shape reconstruction is blown to be provided by Singular Yalue Decomposition (SVD) factorization. However, if several FPs not been observed because of object occlusion and image low resolution, and so on, there is no simple solution. Moreover, the 3D shape reconstructed from noise-distributed FPs is peturbed because of the influence of the noise. This paper focuses on analysis of geometrical properties which can interpret the missing FPs even though the noise is distributed on other FPs.

Recognition and Reconstruction of 3-D Polyhedral Object using Model-based Perceptual Grouping (모델 기반 지각적 그룹핑을 이용한 3차원 다면체의 인식 및 형상 복원)

  • 박인규;이경무;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.7B
    • /
    • pp.957-967
    • /
    • 2001
  • 본 논문에서는 모델 기반 지각적 그룹핑을 이용한 3차원 다면체의 인식 및 형상 복원에 관한 새로운 기법을 제안한다. 2차원 입력 영상과 여기에서 추출된 특징들의 3차원 특징을 거리 측정기를 이용하여 추출하여 인식 및 복원의 기본 특징으로 이용한다. 이 때, 모델의 3차원 기하학적 정보는 결정 트리 분류기에 의하여 학습되며 지각적 그룹핑은 이와 같은 모델 기반으로 이루어진다. 또한, 1차 그룹핑의 결과로 얻어진 3차원 직선 특징간의 관계는 Gestalt 그래프로 표현되며 이것의 부그래프 분할을 통하여 인식을 위한 후보 그룹이 생성된다. 마지막으로 각각의 후보 그룹은 3차원 모델과 정렬되어 가장 잘 부합되는 그룹을 인식 결과로 생성하게 된다. 그리고 정렬의 결과로서 2차원 텍스춰를 추출하여 3차원 모델에 매핑함으로써 실제적인 3차원 형상을 복원할 수 있다. 제안하는 알고리듬의 성능을 평가하기 위하여 불록 영상과 지형 모델 보드 영상에 대하여 실험을 수행하였다. 실험 결과, 모델 기반의 그룹핑 기법은 결과 그룹의 수를 상당히 감소시켰으며 또한 잡음과 가리워짐에 강건한 인식과 복원 결과가 얻어졌다.

  • PDF

Progressive occupancy network for 3D reconstruction (3차원 형상 복원을 위한 점진적 점유 예측 네트워크)

  • Kim, Yonggyu;Kim, Duksu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.65-74
    • /
    • 2021
  • 3D reconstruction means that reconstructing the 3D shape of the object in an image and a video. We proposed a progressive occupancy network architecture that can recover not only the overall shape of the object but also the local details. Unlike the original occupancy network, which uses a feature vector embedding information of the whole image, we extract and utilize the different levels of image features depending on the receptive field size. We also propose a novel network architecture that applies the image features sequentially to the decoder blocks in the decoder and improves the quality of the reconstructed 3D shape progressively. In addition, we design a novel decoder block structure that combines the different levels of image features properly and uses them for updating the input point feature. We trained our progressive occupancy network with ShapeNet. We compare its representation power with two prior methods, including prior occupancy network(ONet) and the recent work(DISN) that used different levels of image features like ours. From the perspective of evaluation metrics, our network shows better performance than ONet for all the metrics, and it achieved a little better or a compatible score with DISN. For visualization results, we found that our method successfully reconstructs the local details that ONet misses. Also, compare with DISN that fails to reconstruct the thin parts or occluded parts of the object, our progressive occupancy network successfully catches the parts. These results validate the usefulness of the proposed network architecture.

A 3D Face Reconstruction Method Robust to Errors of Automatic Facial Feature Point Extraction (얼굴 특징점 자동 추출 오류에 강인한 3차원 얼굴 복원 방법)

  • Lee, Youn-Joo;Lee, Sung-Joo;Park, Kang-Ryoung;Kim, Jai-Hie
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.122-131
    • /
    • 2011
  • A widely used single image-based 3D face reconstruction method, 3D morphable shape model, reconstructs an accurate 3D facial shape when 2D facial feature points are correctly extracted from an input face image. However, in the case that a user's cooperation is not available such as a real-time 3D face reconstruction system, this method can be vulnerable to the errors of automatic facial feature point extraction. In order to solve this problem, we automatically classify extracted facial feature points into two groups, erroneous and correct ones, and then reconstruct a 3D facial shape by using only the correctly extracted facial feature points. The experimental results showed that the 3D reconstruction performance of the proposed method was remarkably improved compared to that of the previous method which does not consider the errors of automatic facial feature point extraction.

Fast Structure Recovery and Integration using Improved Scaled Orthographic Factorization (개선된 직교분해기법을 사용한 빠른 구조 복원 및 융합)

  • Park, Jong-Seung;Yoon, Jong-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.3
    • /
    • pp.303-315
    • /
    • 2007
  • This paper proposes a 3D structure recovery and registration method that uses four or more common points. For each frame of a given video, a partial structure is recovered using tracked points. The 3D coordinates, camera positions and camera directions are computed at once by our improved scaled orthographic factorization method. The partially recovered point sets are parts of a whole model. A registration of point sets makes the complete shape. The recovered subsets are integrated by transforming each coordinate system of the local point subset into a common basis coordinate system. The process of shape recovery and integration is performed uniformly and linearly without any nonlinear iterative process and without loss of accuracy. The execution time for the integration is significantly reduced relative to the conventional ICP method. Due to the fast recovery and registration framework, our shape recovery scheme is applicable to various interactive video applications. The processing time per frame is under 0.01 seconds in most cases and the integration error is under 0.1mm on average.

  • PDF

A study on the Restoration of Feature Information in STEPAP224 to Solid model (STEP AP224에 표현된 특징형상 정보의 솔리드 모델 복원에 관한 연구)

  • 김야일;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.367-372
    • /
    • 2001
  • Feature restoration is that restore feature to 3D solid model using the feature information in STEP AP224. Feature is very important in CAPP, but feature information is defined very complicated in STEP AP224. This paper recommends the algorithm of extraction the feature information in physical STEP AP224file. This program import STEP AP224 file, parse the geometric and topological information, the tolerance data, and feature information line-by-line. After importation and parsing, store data into database. Feature restoration module analyze database including feature information, extract feature information, e.g. feature type, feature's parameter, etc., analyze the relationship and then restore feature to 3D solid model.

  • PDF

Restoration of 3-Dimensional Surface Based on Binocular Stereo Vision (양안 입체시에 의한 3차원 표면의 복원)

  • Jung, Nam-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.3
    • /
    • pp.112-119
    • /
    • 2005
  • In this paper, a model of neural circuit was proposed, which abstracts the depth information in two images gotten from right and left retinas. The proposed neural circuit corresponds to binocular stereo vision based on psychologic and physiological knowledge, and we examine a restoration method of three-dimensional surface. In case of drawing a disparity based on characteristics of images, we can not abstract the depth information correctly if resemblant characteristics are repeated on the boundary region of an object. A binocular disparity is decided in a model of neural circuit by abstraction, synthesis, and correction of a disparity. And we propose a method which restores three-dimensional shape by correcting a depth information, and also restores a three-dimensional surface by mapping a left input image on the restored three-dimensional shape. And we confirmed that the computation time for disparity abstraction can be greatly reduced through the simulation.

  • PDF

Fast Structure Recovery and Integration using Scaled Orthographic Factorization (개선된 직교분해기법을 사용한 구조의 빠른 복원 및 융합)

  • Yoon, Jong-Hyun;Park, Jong-Seung;Lee, Sang-Rak;Noh, Sung-Ryul
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.486-492
    • /
    • 2006
  • 본 논문에서는 비디오에서의 특징점 추적을 통해 얻은 2D 좌표를 이용한 3D 구조를 추정하는 방법과 네 점 이상의 공통점을 이용한 융합 방법을 제안한다. 영상의 각 프레임에서 공통되는 특징점을 이용하여 형상을 추정한다. 영상의 각 프레임에 대한 특징점의 추적은 Lucas-Kanade 방법을 사용하였다. 3D 좌표 추정 방법으로 개선된 직교분해기법을 사용하였다. 개선된 직교분해기법에서는 3D 좌표를 복원함과 동시에 카메라의 위치와 방향을 계산할 수 있다. 복원된 부분 데이터들은 전체를 이루는 일부분이므로, 융합을 통해 완성된 모습을 만들 수 있다. 복원된 부분 데이터들의 서로 다른 좌표계를 기준 좌표계로 변환함으로써 융합할 수 있다. 융합은 카메라의 모션에 해당하는 카메라의 위치와 방향에 의존된다. 융합 과정은 모두 선형으로 평균 0.5초 이하의 수행 속도를 보이며 융합의 오차는 평균 0.1cm 이하의 오차를 보였다.

  • PDF

3D Shape Recovery based on Stereo Matching (스테레오 정합을 이용한 3차원 형상정보 복원)

  • 구본기
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.04a
    • /
    • pp.151-154
    • /
    • 1998
  • 본 논문에서는 스테레오 정합기법을 이용하여 2차원 물체의 형상정보로부터 3차원 형상정보를 자동 추출하는 시스템을 제안한다. 본 논문에서는 정확한 3차원 형상추출을 위해서 밝기값기반 방법과 특징기반 방법의 장점을 살려 두 방법을 통합 사용하였다. 또한, 오정합을 최소화하고 처리속도를 향상시키기 위해서Coarst-to-fine 방법을 적용하였다. 제안한 방법에 의해 도출된 변이영상(Disparity map)은 3차원 그래픽을 이용하여 모델링에 적용함으로써 3차원 형상정보 추출의 타당성 및 가상공간에서의 적용 가능성을 보였다.

  • PDF

Correction of Missing Feature Points for 3D Modeling from 2D object images (2차원 객체 영상의 3차원 모델링을 위한 손실 특징점 보정)

  • Koh, Sung-shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2844-2851
    • /
    • 2015
  • How to recover from the multiple 2D images into 3D object has been widely studied in the field of computer vision. In order to improve the accuracy of the recovered 3D shape, it is more important that noise must be minimized and the number of image frames must be guaranteed. However, potential noise is implied when tracking feature points. And the number of image frames which is consisted of an observation matrix usually decrease because of tracking failure, occlusions, or low image resolution, and so on. Therefore, it is obviously essential that the number of image frames must be secured by recovering the missing feature points under noise. Thus, we propose the analytic approach which can control directly the error distance and orientation of missing feature point by the geometrical properties under noise distribution. The superiority of proposed method is demonstrated through experimental results for synthetic and real object.