• 제목/요약/키워드: 특징 피라미드

검색결과 46건 처리시간 0.03초

컬러 모폴로지를 이용한 컬러 화상의 특징 추출에 관한 연구

  • 남태희
    • 한국컴퓨터정보학회지
    • /
    • 제8권2호
    • /
    • pp.9-14
    • /
    • 2001
  • 본 논문에서는 새로운 칼라 모폴로지 피라미드를 제안하고. 제안된 칼라 모폴로지의 유용성 평가를 위해 이미지에서 중요한 에지를 검출하고자 한다. 여기서 이미지 피라미드 구조는 최초 컬러 이미지의 반복적인 필터링과 샘플링의 순차적인 실험 과정의 단계를 본 논문에서 제안한 CMP를 이용하여 연속적인 필터링 처리로 불필요한 크기의 물체 및 잡음을 제거하여. 효율적인 특징 추출의 유효성을 검증하고자 한다.

  • PDF

각도 피라미드를 이용한 Bag-of-features 를 통한 회전에 강한 물체 인식 (Rotation-invariant Object Categorization using Bag-of-features with Angular Pyramid)

  • 권보준;김선아;이경준;윤일동;이상욱
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 하계학술대회
    • /
    • pp.449-450
    • /
    • 2011
  • 본 논문에서는 영상에서의 물체 인식에 주로 사용되었던 공간 피라미드를 변형시킨 각도 피라미드를 이용한 bag-of-features 방법으로 회전 변화에도 강한 물체 인식에도 적용할 수 있도록 한다. 기존의 공간 피라미드에서 수직의 격자 모양으로 영상을 나누었던 것에 비해 각도 피라미드는 영상의 중심을 기준으로 동일한 각도로 영상을 분할하여 피라미드로 만든다. 각 영역 안에서 특징들의 히스토그램으로 영상을 표현하고 영상간의 유사도는 각도 피라미드를 단계별로 순환적 자리옮김을 통해 회전시켜가며 히스토그램 교집합을 구하여 측정한다. 이 방법을 Caltech-101 데이터베이스에 적용해본 결과 회전 변환을 준 테스트 영상에 대해 기존의 공간 피라미드를 사용한 방법에 비해 높은 성능을 보이는 것을 확인하였다. 따라서 이 방법을 통하여 다양한 상황의 일반적인 물체 분류할 수 있을 것으로 기대한다.

  • PDF

계층 간 특징 복원-예측 네트워크를 통한 피라미드 특징 압축 (Pyramid Feature Compression with Inter-Level Feature Restoration-Prediction Network)

  • 김민섭;심동규
    • 방송공학회논문지
    • /
    • 제27권3호
    • /
    • pp.283-294
    • /
    • 2022
  • 딥 러닝 네트워크에서 사용되는 특징 맵은 일반적으로 영상보다 데이터가 크며 특징 맵을 전송하기 위해서는 영상의 압축률보다 더 높은 압축률이 요구된다. 본 논문은 딥러닝 기반의 영상처리에서 객체의 크기에 대한 강인성을 가지는 FPN 구조의 네트워크에서 사용되는 피라미드 특징 맵을 높은 압축률로 전송하기 위해 제안한 복원-예측 네트워크를 통해 전송된 일부 계층의 피라미드 특징 맵으로 전송하지 않은 계층의 피라미드 특징 맵을 예측하며, 압축으로 인한 손상을 복원하는 구조를 제안한다. 제안한 방법의 COCO 데이터셋 2017 Train images에 대한 객체 탐지의 성능은 rate-precision 그래프에서 VTM12.0을 통해 특징 맵을 압축한 결과 대비 BD-rate 31.25%의 성능향상을 보였고, PCA와 DeepCABAC을 통한 압축을 수행한 방법 대비 BD-rate 57.79%의 성능향상을 보였다.

공간 적응적 임계값 설정을 통한 X-ray 영상의 잡음 제거 (Noise Reduction of X-ray Image by Spatially Adaptive Thresholding)

  • 유주완;이종민;김회율
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.934-936
    • /
    • 2005
  • 본 논문에서는 피라미드 계층간에 나타나는 잡음 신호의 특성을 바탕으로 라플라시안 피라미드를 이용한 X-ray 영상의 잡음 제거 방법을 제안한다. 제안하는 방법은 잡음 제거를 위해 X-ray 영상 신호의 지역적 표준 편차와 신호의 영역적 특징을 이용하였다. 지역적 표준 편차는 영상의 경계선 정도와 비례하는 특징을 가지기 때문에 지역적 표준 편차를 이용하여 경계 정보의 손실을 막았다. 또한 라플라시안 피라미드의 각 계층에 잡음 신호가 좁은 면적을 가지며 분포되는 영역적 특징을 이용하여 평평한 지역에서 잡음 신호의 제거 성능을 높였다. X-ray영상 및 잡음이 첨가된 표준 영상에 대한 실험을 통해 제안된 방법이 경계 정보의 유지와 잡음 제거에서 기존의 방법보다 향상된 성능을 보임을 확인하였다.

  • PDF

피라미드 기반 광류 추정을 이용한 영상 내의 임의의 점 추적 알고리즘 (Algorithm for Arbitrary Point Tracking using Pyramidal Optical Flow)

  • 이재광;박창준
    • 한국멀티미디어학회논문지
    • /
    • 제10권11호
    • /
    • pp.1407-1416
    • /
    • 2007
  • 본 논문에서는 피라미드 기반 광류 추정 방법과 이를 이용하여 영상 내 임의의 점 추적 알고리즘에 대해 설명한다. 본 논문에서는 Lucas-Kanade 광류 추정 방법을 기반으로 광류를 계산하였다. 작은 움직임에 민감하면서 큰 움직임까지 계산할 수 있도록 영상 피라미드를 사용하였고, 영상 피라미드와 Lucas-Kanade 광류 추정 방법을 혼합하는 과정에서 영상 피라미드의 하위수준으로 내려갈수록 증폭되는 광류 추정 오차를 줄이기 위한 정제방범을 제안하였다. 또한 광류의 제약조건과 부화소 보간을 이용하여 광류 추정의 정확도를 높였으며, 추적하고자 하는 영상내의 임의의 점 주변의 광류 값을 이용하여 테두리나 모퉁이 같은 특징이 없는 점들의 추적도 가능하도록 하였다. 본 논문에서는 웹 카메라를 이용하여 제안된 알고리즘의 광류 계산 결과와 임의의 점 추적 결과를 제시한다.

  • PDF

영상 크기변화에 강인한 실시간 속도표지판 인식 (Real time speed-limit sign recognition invariant to image scale)

  • 황민철;고병철;남재열
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1358-1360
    • /
    • 2015
  • 본 논문에서는 MB-LBP(Multi-scale Block Local Binary Patterns)와 공간피라미드를 이용하여 생성된 특징을 랜덤 포레스트(Random Forest) 분류기에 적용하여 영상내의 표지판 속도를 인식하는 알고리즘을 제안한다. 입력 영상에서 표지판 영역은 다양한 위치와 크기를 가지며 주위 배경이 후보 영역에 포함되므로 먼저 입력 영상에 원형 Hough Transform을 적용하여 원형의 표지판 후보 영역만을 검출한다. 그 후 영상의 화질을 향상시키기 위해 히스토그램 평활화와 모폴로지 연산을 적용하여 표지판의 숫자 영역과 배경 영역의 대비를 높이도록 한다. 표지판의 크기 변화에 강건한 시스템의 구현을 위해 후보 영역에서 LBP(Local Binary Patterns)보다 우수한 성능을 보이는 MB-LBP를 적용하고, 다양한 크기의 속도 표지판을 인식하기 위해 공간 피라미드를 사용하여 지역적 특징과 전역적 특징 모두를 추출하였다. 추출된 특징은 랜덤 포레스트(Random Forest)를 이용하여 각 9개의 속도 표지판으로 분류, 각 속도별 클래스에 대한 인식 성능을 측정하였다.

윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색 (SIFT based Image Similarity Search using an Edge Image Pyramid and an Interesting Region Detection)

  • 유승훈;김덕환;이석룡;정진완;김상희
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권4호
    • /
    • pp.345-355
    • /
    • 2008
  • 다양한 형태 특징 추출 방법 중의 하나인 SIFT는 물체 인식, 모션 추적, 3차원 이미지 재구성과 같은 컴퓨터 비전 응용 분야에서 많이 사용된다. 하지만 SIFT 방법은 많은 특징점들과 고차원의 특징 벡터를 사용하기 때문에 이미지 유사성 검색에 그대로 적용하기에는 많은 어려움이 있다. 본 논문에서는 윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색 기법을 제안한다. 제안한 방법은 윤곽선 이미지 피라미드를 이용하여 이미지의 밝기 변화, 크기, 회전등에 불변한 특징을 추출하고, 타원 형태의 허프변환을 이용한 관심영역 검출을 통해 불필요한 많은 특징점들을 제거하여 검색성능을 높인다. 실험 결과에서 제안한 방법의 이미지 검색 성능이 기존의 SIFT의 방법에 비해 평균 재현율이 약 20%정도 좋은 성능을 보이고 있다.

크기 및 회전 불변 영역 특징을 이용한 이미지 유사성 검색 (Image Similarity Retrieval using an Scale and Rotation Invariant Region Feature)

  • 유승훈;김현수;이석룡;임명관;김덕환
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권6호
    • /
    • pp.446-454
    • /
    • 2009
  • 다양한 영역 검출 및 형태 특징 추출 방법 중에서 MSER과 SIFT를 응용한 방법들이 컴퓨터비전 분야에 많이 사용된다. 하지만 기존의 SIFT를 이용한 특징 추출 방법은 자기 변화에 민감한 특성을 지니며, MSER 방법은 이미지의 크기 변화에 민감하고, 이미지 유사성 검색에 그대로 적용하기에는 어려움이 많다. 본 논문에서는 스케일 피라미드, MSER 그리고 어파인(affine) 정규화 과정 등을 이용한 영역 특징 서술자를 제안한다. 제안한 방법은 어파인 정규화 방법과 스케일 피라미드를 사용하기 때문에 이미지의 크기, 회전 및 자기 변화에 불변하다. 다양한 이미지들을 이용하여 실험하고, 실험 결과에서 제안한 방법이 SIFT, PCA-SIFT, CE-SIFT 그리고 SURF 방법에 비해서 각각 20%, 38%, 11%, 24% 이상 좋은 이미지 검색 성능을 보이고 있다.

효율적인 객체 검출을 위해 Attention Process를 적용한 경량화 모델에 대한 연구 (A Study on Lightweight Model with Attention Process for Efficient Object Detection)

  • 박찬수;이상훈;한현호
    • 디지털융복합연구
    • /
    • 제19권5호
    • /
    • pp.307-313
    • /
    • 2021
  • 본 논문에서는 기존 객체 검출 방법 대비 매개변수를 감소시킨 경량화 네트워크를 제안하였다. 현재 사용되는 검출 모델의 경우 정확도 향상을 위해 네트워크 복잡도를 크게 늘렸다. 따라서, 제안하는 네트워크는 EfficientNet을 특징 추출 네트워크로 사용하였으며, 후속 레이어는 저수준 세부 특징과 고수준의 의미론적 특징을 활용하기 위해 피라미드 구조로 형성하였다. 피라미드 구조 사이에 attention process를 적용하여 예측에 불필요한 노이즈를 억제하였다. 네트워크의 모든 연산 과정은 depth-wise 및 point-wise 컨볼루션으로 대체하여 연산량을 최소화하였다. 제안하는 네트워크는 PASCAL VOC 데이터셋으로 학습 및 평가하였다. 실험을 통해 융합된 특징은 정제 과정을 거쳐 다양한 객체에 대해 견고한 특성을 보였다. CNN 기반 검출 모델과 비교하였을 때 적은 연산량으로 검출 정확도가 향상되었다. 향후 연구로 객체의 크기에 맞게 앵커의 비율을 조절할 필요성이 사료된다.

방향성 특징을 가지는 특징 점에 의한 차량 검출 (Vehicle Detection using Feature Points with Directional Features)

  • 최동혁;김병수
    • 전자공학회논문지SC
    • /
    • 제42권2호
    • /
    • pp.11-18
    • /
    • 2005
  • 본 논문은 CCD 카메라를 통해 입력받은 영상에서 차량을 검출하는 방법을 제안한다. 차량을 검출하기 위해서 먼저 영상을 독립적인 방향과 레벨을 가지는 스티어블 피라미드로 변환한다. 특징 벡터는 스티어블 피라미드로 변환된 서브밴드들을 연관되는 같은 위치의 픽셀들을 체인으로 연결하여 방향성 피라미드 특징을 가지는 다차원 벡터들로 구성한다. 차량의 검출은 특징 점의 특징 벡터들을 차량 검출에 사용하였다. 특징 점은 기하학적 위치 정보와 국부적인 방향 정보를 가지는데 실험을 위해서 격자 구조 모양으로 일정한 간격을 갖는 격자 점, 사람의 수작업을 통해서 만든 코너 점, 그리고 격자 내의 코너 점을 대상으로 했다. 차량 검출을 위해 미리 저장된 모델 영상의 특징 점들의 특징벡터들과 후보 영상으로부터 추출된 특징 벡터들의 정합을 통해 각 특징 점의 거리를 비교했다. 차량 검출을 위해 특징 점을 이용함으로써 후보 영상 전체를 비교하지 않고 특징 점의 위치에 대해서만 특징 벡터를 비교하기 때문에 비교 시간과 정확도를 높일 수 있었다. 또한 주변 밝기조건 및 그림자의 영향에 의해 차량 검출이 민감한 문제를 해결할 수 있었다. 도로에서 획득한 주간 영상(10,567)과 저녁 영상(624)을 대상으로 실험하였고, 검출율은 주간의 경우 $92.0\%$와 야간의 경우 $87.3\%$를 얻을 수 있었다.