본 논문에서는 새로운 칼라 모폴로지 피라미드를 제안하고. 제안된 칼라 모폴로지의 유용성 평가를 위해 이미지에서 중요한 에지를 검출하고자 한다. 여기서 이미지 피라미드 구조는 최초 컬러 이미지의 반복적인 필터링과 샘플링의 순차적인 실험 과정의 단계를 본 논문에서 제안한 CMP를 이용하여 연속적인 필터링 처리로 불필요한 크기의 물체 및 잡음을 제거하여. 효율적인 특징 추출의 유효성을 검증하고자 한다.
본 논문에서는 영상에서의 물체 인식에 주로 사용되었던 공간 피라미드를 변형시킨 각도 피라미드를 이용한 bag-of-features 방법으로 회전 변화에도 강한 물체 인식에도 적용할 수 있도록 한다. 기존의 공간 피라미드에서 수직의 격자 모양으로 영상을 나누었던 것에 비해 각도 피라미드는 영상의 중심을 기준으로 동일한 각도로 영상을 분할하여 피라미드로 만든다. 각 영역 안에서 특징들의 히스토그램으로 영상을 표현하고 영상간의 유사도는 각도 피라미드를 단계별로 순환적 자리옮김을 통해 회전시켜가며 히스토그램 교집합을 구하여 측정한다. 이 방법을 Caltech-101 데이터베이스에 적용해본 결과 회전 변환을 준 테스트 영상에 대해 기존의 공간 피라미드를 사용한 방법에 비해 높은 성능을 보이는 것을 확인하였다. 따라서 이 방법을 통하여 다양한 상황의 일반적인 물체 분류할 수 있을 것으로 기대한다.
딥 러닝 네트워크에서 사용되는 특징 맵은 일반적으로 영상보다 데이터가 크며 특징 맵을 전송하기 위해서는 영상의 압축률보다 더 높은 압축률이 요구된다. 본 논문은 딥러닝 기반의 영상처리에서 객체의 크기에 대한 강인성을 가지는 FPN 구조의 네트워크에서 사용되는 피라미드 특징 맵을 높은 압축률로 전송하기 위해 제안한 복원-예측 네트워크를 통해 전송된 일부 계층의 피라미드 특징 맵으로 전송하지 않은 계층의 피라미드 특징 맵을 예측하며, 압축으로 인한 손상을 복원하는 구조를 제안한다. 제안한 방법의 COCO 데이터셋 2017 Train images에 대한 객체 탐지의 성능은 rate-precision 그래프에서 VTM12.0을 통해 특징 맵을 압축한 결과 대비 BD-rate 31.25%의 성능향상을 보였고, PCA와 DeepCABAC을 통한 압축을 수행한 방법 대비 BD-rate 57.79%의 성능향상을 보였다.
본 논문에서는 피라미드 계층간에 나타나는 잡음 신호의 특성을 바탕으로 라플라시안 피라미드를 이용한 X-ray 영상의 잡음 제거 방법을 제안한다. 제안하는 방법은 잡음 제거를 위해 X-ray 영상 신호의 지역적 표준 편차와 신호의 영역적 특징을 이용하였다. 지역적 표준 편차는 영상의 경계선 정도와 비례하는 특징을 가지기 때문에 지역적 표준 편차를 이용하여 경계 정보의 손실을 막았다. 또한 라플라시안 피라미드의 각 계층에 잡음 신호가 좁은 면적을 가지며 분포되는 영역적 특징을 이용하여 평평한 지역에서 잡음 신호의 제거 성능을 높였다. X-ray영상 및 잡음이 첨가된 표준 영상에 대한 실험을 통해 제안된 방법이 경계 정보의 유지와 잡음 제거에서 기존의 방법보다 향상된 성능을 보임을 확인하였다.
본 논문에서는 피라미드 기반 광류 추정 방법과 이를 이용하여 영상 내 임의의 점 추적 알고리즘에 대해 설명한다. 본 논문에서는 Lucas-Kanade 광류 추정 방법을 기반으로 광류를 계산하였다. 작은 움직임에 민감하면서 큰 움직임까지 계산할 수 있도록 영상 피라미드를 사용하였고, 영상 피라미드와 Lucas-Kanade 광류 추정 방법을 혼합하는 과정에서 영상 피라미드의 하위수준으로 내려갈수록 증폭되는 광류 추정 오차를 줄이기 위한 정제방범을 제안하였다. 또한 광류의 제약조건과 부화소 보간을 이용하여 광류 추정의 정확도를 높였으며, 추적하고자 하는 영상내의 임의의 점 주변의 광류 값을 이용하여 테두리나 모퉁이 같은 특징이 없는 점들의 추적도 가능하도록 하였다. 본 논문에서는 웹 카메라를 이용하여 제안된 알고리즘의 광류 계산 결과와 임의의 점 추적 결과를 제시한다.
본 논문에서는 MB-LBP(Multi-scale Block Local Binary Patterns)와 공간피라미드를 이용하여 생성된 특징을 랜덤 포레스트(Random Forest) 분류기에 적용하여 영상내의 표지판 속도를 인식하는 알고리즘을 제안한다. 입력 영상에서 표지판 영역은 다양한 위치와 크기를 가지며 주위 배경이 후보 영역에 포함되므로 먼저 입력 영상에 원형 Hough Transform을 적용하여 원형의 표지판 후보 영역만을 검출한다. 그 후 영상의 화질을 향상시키기 위해 히스토그램 평활화와 모폴로지 연산을 적용하여 표지판의 숫자 영역과 배경 영역의 대비를 높이도록 한다. 표지판의 크기 변화에 강건한 시스템의 구현을 위해 후보 영역에서 LBP(Local Binary Patterns)보다 우수한 성능을 보이는 MB-LBP를 적용하고, 다양한 크기의 속도 표지판을 인식하기 위해 공간 피라미드를 사용하여 지역적 특징과 전역적 특징 모두를 추출하였다. 추출된 특징은 랜덤 포레스트(Random Forest)를 이용하여 각 9개의 속도 표지판으로 분류, 각 속도별 클래스에 대한 인식 성능을 측정하였다.
다양한 형태 특징 추출 방법 중의 하나인 SIFT는 물체 인식, 모션 추적, 3차원 이미지 재구성과 같은 컴퓨터 비전 응용 분야에서 많이 사용된다. 하지만 SIFT 방법은 많은 특징점들과 고차원의 특징 벡터를 사용하기 때문에 이미지 유사성 검색에 그대로 적용하기에는 많은 어려움이 있다. 본 논문에서는 윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색 기법을 제안한다. 제안한 방법은 윤곽선 이미지 피라미드를 이용하여 이미지의 밝기 변화, 크기, 회전등에 불변한 특징을 추출하고, 타원 형태의 허프변환을 이용한 관심영역 검출을 통해 불필요한 많은 특징점들을 제거하여 검색성능을 높인다. 실험 결과에서 제안한 방법의 이미지 검색 성능이 기존의 SIFT의 방법에 비해 평균 재현율이 약 20%정도 좋은 성능을 보이고 있다.
다양한 영역 검출 및 형태 특징 추출 방법 중에서 MSER과 SIFT를 응용한 방법들이 컴퓨터비전 분야에 많이 사용된다. 하지만 기존의 SIFT를 이용한 특징 추출 방법은 자기 변화에 민감한 특성을 지니며, MSER 방법은 이미지의 크기 변화에 민감하고, 이미지 유사성 검색에 그대로 적용하기에는 어려움이 많다. 본 논문에서는 스케일 피라미드, MSER 그리고 어파인(affine) 정규화 과정 등을 이용한 영역 특징 서술자를 제안한다. 제안한 방법은 어파인 정규화 방법과 스케일 피라미드를 사용하기 때문에 이미지의 크기, 회전 및 자기 변화에 불변하다. 다양한 이미지들을 이용하여 실험하고, 실험 결과에서 제안한 방법이 SIFT, PCA-SIFT, CE-SIFT 그리고 SURF 방법에 비해서 각각 20%, 38%, 11%, 24% 이상 좋은 이미지 검색 성능을 보이고 있다.
본 논문에서는 기존 객체 검출 방법 대비 매개변수를 감소시킨 경량화 네트워크를 제안하였다. 현재 사용되는 검출 모델의 경우 정확도 향상을 위해 네트워크 복잡도를 크게 늘렸다. 따라서, 제안하는 네트워크는 EfficientNet을 특징 추출 네트워크로 사용하였으며, 후속 레이어는 저수준 세부 특징과 고수준의 의미론적 특징을 활용하기 위해 피라미드 구조로 형성하였다. 피라미드 구조 사이에 attention process를 적용하여 예측에 불필요한 노이즈를 억제하였다. 네트워크의 모든 연산 과정은 depth-wise 및 point-wise 컨볼루션으로 대체하여 연산량을 최소화하였다. 제안하는 네트워크는 PASCAL VOC 데이터셋으로 학습 및 평가하였다. 실험을 통해 융합된 특징은 정제 과정을 거쳐 다양한 객체에 대해 견고한 특성을 보였다. CNN 기반 검출 모델과 비교하였을 때 적은 연산량으로 검출 정확도가 향상되었다. 향후 연구로 객체의 크기에 맞게 앵커의 비율을 조절할 필요성이 사료된다.
본 논문은 CCD 카메라를 통해 입력받은 영상에서 차량을 검출하는 방법을 제안한다. 차량을 검출하기 위해서 먼저 영상을 독립적인 방향과 레벨을 가지는 스티어블 피라미드로 변환한다. 특징 벡터는 스티어블 피라미드로 변환된 서브밴드들을 연관되는 같은 위치의 픽셀들을 체인으로 연결하여 방향성 피라미드 특징을 가지는 다차원 벡터들로 구성한다. 차량의 검출은 특징 점의 특징 벡터들을 차량 검출에 사용하였다. 특징 점은 기하학적 위치 정보와 국부적인 방향 정보를 가지는데 실험을 위해서 격자 구조 모양으로 일정한 간격을 갖는 격자 점, 사람의 수작업을 통해서 만든 코너 점, 그리고 격자 내의 코너 점을 대상으로 했다. 차량 검출을 위해 미리 저장된 모델 영상의 특징 점들의 특징벡터들과 후보 영상으로부터 추출된 특징 벡터들의 정합을 통해 각 특징 점의 거리를 비교했다. 차량 검출을 위해 특징 점을 이용함으로써 후보 영상 전체를 비교하지 않고 특징 점의 위치에 대해서만 특징 벡터를 비교하기 때문에 비교 시간과 정확도를 높일 수 있었다. 또한 주변 밝기조건 및 그림자의 영향에 의해 차량 검출이 민감한 문제를 해결할 수 있었다. 도로에서 획득한 주간 영상(10,567)과 저녁 영상(624)을 대상으로 실험하였고, 검출율은 주간의 경우 $92.0\%$와 야간의 경우 $87.3\%$를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.