• Title/Summary/Keyword: 특징 파라미터 추출

Search Result 225, Processing Time 0.023 seconds

Active Appearance Model Face Shape Estimation Using Face Region Tracking and Mouth Detection (얼굴 영역 추적과 입 검출을 이용한 AAM 얼굴 모양 파라미터 추정)

  • Choi, Kwun-Taeg;Byun, Hye-Ran
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.928-930
    • /
    • 2005
  • 얼굴의 특징점 추적은 많은 응용프로그램에서 사용된다. AAM기반의 접근방식은 정교한 얼굴 특징점 정보를 제공하지만 정확한 특징 점 추출을 위해 얼굴 모양 파라미터 초기화 문제와 연속 영상에서 얼굴의 이동이 클 경우 모션 보정에 대한 문제가 여전히 남아있다. 이러한 문제를 풀기 위해 본 논문에서는 CAMShift를 사용해 얼굴 영역을 추적하고, 얼굴 영역 내에서 입을 검출함으로써 AAM 검색을 위한 얼굴 모양 파라미터를 추정하는 방법을 제안한다. 기존 알고리즘과의 비교 실험을 통해 얼굴의 움직임이 심한 상황에서도 제안하는 알고리즘의 성능이 매우 우수함을 확인할 수 있었다.

  • PDF

A PCA-based MFDWC Feature Parameter for Speaker Verification System (화자 검증 시스템을 위한 PCA 기반 MFDWC 특징 파라미터)

  • Hahm Seong-Jun;Jung Ho-Youl;Chung Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2006
  • A Principal component analysis (PCA)-based Mel-Frequency Discrete Wavelet Coefficients (MFDWC) feature Parameters for speaker verification system is Presented in this Paper In this method, we used the 1st-eigenvector obtained from PCA to calculate the energy of each node of level that was approximated by. met-scale. This eigenvector satisfies the constraint of general weighting function that the squared sum of each component of weighting function is unity and is considered to represent speaker's characteristic closely because the 1st-eigenvector of each speaker is fairly different from the others. For verification. we used Universal Background Model (UBM) approach that compares claimed speaker s model with UBM on frame-level. We performed experiments to test the effectiveness of PCA-based parameter and found that our Proposed Parameters could obtain improved average Performance of $0.80\%$compared to MFCC. $5.14\%$ to LPCC and 6.69 to existing MFDWC.

A Property Analysis of Parameters for Effective Watermarking based on Human Visual System (HVS 기반 효과적인 워터마킹을 위한 파라미터 성능분석)

  • Park Ki-Hong;Yoon Byung-Min;Kim YoonHo
    • Journal of Digital Contents Society
    • /
    • v.6 no.2
    • /
    • pp.119-123
    • /
    • 2005
  • We proposed a method of effective watermarking based m HVS. To speak generally, HVS parameters are contrast sensitivity, texture degree, entropy sensitivity and standard of deviation, etc. The aim of this paper is evaluated by the experiments of imperceptibility and correctness of watermark. According to some experimental results, contrast sensitivity function is superior in smooth image. On the other hand, standard of deviation provides good results in rough images. Consequently, how to select the parameters considering image attribute is key problem in effective watermarking.

  • PDF

Extraction of Facial Feature Component using Section Segmentation of Block-units (블록단위 영역분할을 이용한 얼굴 특징 요소 추출)

  • 김승업;이우범;김욱현
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.97-100
    • /
    • 2000
  • 본 논문에서는 얼굴의 특징 추출 알고리즘을 제안한다. 입력 영상을 이진 영상으로 처리한 후, 얼굴 요소 후보 블록의 면적, 둘레, 원형도, 종횡비를 이용하여 불변하는 눈, 코, 입의 특징 요소를 추출한다. 사람의 얼굴에 대한 특징 요소를 추출하기 위하여 우선 이진 영상을 생성한다. 하나 하나의 고립된 영역으로 분리하기 위하여 화소 레이블링을 한 후 만들어진 얼굴 요소 후보 블록 단위로 면적을 구하고, 윤곽선 추적 방법에 의하여 둘레를 구한 다음 면적, 둘레, 원형도 및 종횡비의 유사도를 구한다 블록의 종합 유사도, 대칭적 거리, 위치의 유사도를 활용하여 눈, 코, 입을 추출한다. 추출된 각 특징 요소간의 거리와 각도를 이용하여 12개의 특징 인수를 구하는 제안 알고리즘을 수행함으로써 얼굴의 특징 인수들을 추출한다. 각 특징점 사이의 거리와 각 거리간의 기울기를 이용하여 100명으로부터 획득한 297개의 원 영상을 대상으로 12개의 특징 파라미터를 추출한 결과 92.93%의 추출 성공률을 보였다. 이러한 결과는 외부 환경의 영향을 덜 받는 눈, 코, 입의 위치 관계의 블록을 근거로 특징 요소를 추출할 수 있도록 제안 알고리즘을 구성하였던 것으로 판단된다.

  • PDF

Facial Expression Recognition using Model-based Feature Extraction in Image Sequence (동영상에서의 모델기반 특징추출을 이용한 얼굴 표정인식)

  • Park Mi-Ae;Choi Sung-In;Im Don-Gak;Ko Je-Pil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.343-345
    • /
    • 2006
  • 본 논문에서는 ASM(Active Shape Model)과 상태 기반 모델을 사용하여 동영상으로부터 얼굴 표정을 인식하는 방법을 제안한다. ASM을 이용하여 하나의 입력영상에 대한 얼굴요소 특징점들을 정합하고 그 과정에서 생성되는 모양 파라미터 벡터를 추출한다. 동영상에 대해 추출되는 모양 파라미터 벡터 집합을 세 가지상태 중 한 가지를 가지는 상태 벡터로 변환하고 분류기를 통해 얼굴의 표정을 인식한다. 분류단계에서는 분류성능을 높이기 위해 새로운 개체 기반 학습 방법을 제안한다. 실험에서는 새로이 제안한 개체 기반 학습 방법이 KNN 분류기보다 더 좋은 인식률을 나타내는 것을 보인다.

  • PDF

A Classification of lschemic Heart Disease using Neural Network in Magnetocardiogram (심자도에서 신경회로망을 이용한 허혈성 심장질환 분류)

  • Eum, Sang-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2137-2142
    • /
    • 2016
  • The electrical current generated by heart creates not only electric potential but also a magnetic field. In this study, the signals obtained magnetocardiogram(MCG) using 61 channel superconducting quantum interference device(SQUID) system, and the clinical significance of various feature parameters has been developed MCG. Neural network algorithm was used to perform the classification of ischemic heart disease. The MCG signal was obtained to facilitate the extraction of parameters through a process of pre-processing. The data used to research the normal group 10 and ischemic heart disease group 10 with visible signs of stable angina patients. The available clinical indicators were extracted by characteristic point, characteristic interval parameter, and amplitude ratio parameter. The extracted parameters are determined to analysis the significance and clinical parameters were defined. It is possible to classify ischemic heart disease using the MCG feature parameters as a neural network input.

Robot vision system for face recognition using fuzzy inference from color-image (로봇의 시각시스템을 위한 칼라영상에서 퍼지추론을 이용한 얼굴인식)

  • Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.2
    • /
    • pp.106-110
    • /
    • 2014
  • This paper proposed the face recognition method which can be effectively applied to the robot's vision system. The proposed algorithm is recognition using hue extraction and feature point. hue extraction was using difference of skin color, pupil color, lips color. Features information were extraction from eye, nose and mouth using feature parameters of the difference between the feature point, distance ratio, angle, area. Feature parameters fuzzified data with the data generated by membership function, then evaluate the degree of similarity was the face recognition. The result of experiment are conducted with frontal color images of face as input images the received recognition rate of 96%.

Feature Extraction and Search for Broadcasting Background Music Identification in A Large-Scale Music DB (대규모 음악 DB에서 방송 배경음악 식별을 위한 특징 추출 및 검색)

  • Park, Jihyun;Kim, Junghyun;Kim, Hyemi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.605-606
    • /
    • 2020
  • 최근 방송 사용 음악에 대한 저작권료 배분의 투명성을 위하여 방송음악 식별 기술에 대한 관심이 커지고 있다. 음악 DNA라 부르는 음악의 신호적 특징을 이용하는 기존의 음악식별 기술이 존재하지만, 방송 배경음악의 특성으로 인해 방송 사용 음악 식별에 그대로 활용하기는 어렵다. 방송이나 영화에 사용되는 배경음악은 우리가 일상생활에서 주로 소비하는 가요나 팝과 같은 음악과 비교하여 그 수가 매우 많고, 하나의 음악 테마에 대하여 조금씩 다르게 편곡한 유사 음악들이 다수 존재한다. 즉, 방송 배경음악을 식별을 위해서는 유사한 음악이 많은 대규모 음악 DB를 대상으로 잡음이 섞여 있는 음악을 식별하여야 한다. 한편, 대부분의 음악 식별 시스템은 빠른 검색을 위하여 모든 데이터를 메모리에 올려두고 처리하는 방식으로 동작하는데, 대규모 음악 DB를 지원하기 위해서는 시스템 자원을 적게 사용하면서도 식별율이 떨어지지 않는 특징 추출 파라미터와 인덱싱 파라미터를 찾는 것이 중요하다. 본 논문에서는 이러한 요구사항을 만족하는 배경음악 특징의 추출방법과 이 특징을 효율적으로 검색할 수 있도록 하는 검색 구조를 기술한다.

  • PDF

Digit Recognition Rate Comparision in DHMM and Neural Network (DHMM과 신경망에서 숫자음 인식률 비교)

  • 박정환;이원일;황태문;이종혁
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.171-174
    • /
    • 2002
  • 음성 신호는 언어정보, 개인성, 감정 등의 여러 가지 정보를 포함한 음향학적인 신호인 동시에 가장 자연스럽고 널리 쓰이는 의사소통 수단의 하나이다. 본 연구에서는 저장된 음성 신호에서 추출한 특징 파라미터를 사용한 경우와 음성 특징파라미터에 입술 패턴에 대한 영상정보를 통시에 사용한 경우 DHMM과 신경망을 통하여 각각 인식률을 비교해 보았다. 그 결과 입술패턴에 대할 영상정보도 음성인식에 사용 할 수 있음을 알 수 있었다.

  • PDF

Video retrieval method using non-parametric based motion classification (비-파라미터 기반의 움직임 분류를 통한 비디오 검색 기법)

  • Kim Nac-Woo;Choi Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.1-11
    • /
    • 2006
  • In this paper, we propose the novel video retrieval algorithm using non-parametric based motion classification in the shot-based video indexing structure. The proposed system firstly gets the key frame and motion information from each shot segmented by scene change detection method, and then extracts visual features and non-parametric based motion information from them. Finally, we construct real-time retrieval system supporting similarity comparison of these spatio-temporal features. After the normalized motion vector fields is created from MPEG compressed stream, the extraction of non-parametric based motion feature is effectively achieved by discretizing each normalized motion vectors into various angle bins, and considering a mean, a variance, and a direction of these bins. We use the edge-based spatial descriptor to extract the visual feature in key frames. Experimental evidence shows that our algorithm outperforms other video retrieval methods for image indexing and retrieval. To index the feature vectors, we use R*-tree structures.