• Title/Summary/Keyword: 특징행렬

Search Result 327, Processing Time 0.027 seconds

Natural Feature Tracking Using Optical Flow On Mobile Devices (광류 추적 기법을 사용한 모바일 기기에서의 자연 특징 추적)

  • Bae, Byeong-Jo;Park, Jong-Seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.562-565
    • /
    • 2010
  • 시각기반 증강현실 시스템의 구현을 위해서는 입력되는 카메라영상의 프레임을 매번 특징점을 추출하고 패턴 매칭 과정을 반복하는 것은 저 사양의 모바일 기기에서는 적합하지 않다. 본 논문에서는 이러한 문제점을 해결 하고자 카메라영상에서 패턴이 한번 인식되게 되면 그 이후의 영상에 대해서는 패턴 인식과정을 생략하고 이전 영상에서 매칭된 특징점을 광류 기반 추적기법을 사용하여 추적하도록 한다. 또한 패턴 추적 절차의 수행 중 추적이 실패하여 생기는 특징점 소실 문제는 정확한 호모그래피 행렬과 카메라 자세 추정을 어렵게 하는데 이러한 문제를 해결하도록 하는 패턴 추적의 성공 또는 실패는 판단하는 기준을 세워 모바일 기기에서 빠르게 동작하도록 하는 광류 추적 기법을 사용한 자연 특징 추적 기반 증강현실 시스템을 제안한다.

Feature Points Tracking of Digital Image By One-Directional Iterating Layer Snake Model (일방향 순차층위 스네이크 모델에 의한 디지털영상의 특징점 추적)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.86-92
    • /
    • 2007
  • A discrete dynamic model for tracking feature points in 2D images is developed. Conventional snake approaches deform a contour to lock onto features of interest within an image by finding a minimum of its energy functional, composed of internal and external forces. The neighborhood around center snaxel is a space matrix, typically rectangular. The structure of the model proposed in this paper is a set of connected vertices. Energy model is designed for its local minima to comprise the set of alternative solutions available to active process. Block on tracking is one dimension, line type. Initial starting points are defined to the satisfaction of indent states, which is then automatically modified by an energy minimizing process. The track is influenced by curvature constraints, ascent/descent or upper/lower points. The advantages and effectiveness of this layer approach may also be applied to feature points tracking of digital image whose pixels have one directional properties with high autocorrelation between adjacent data lines, vertically or horizontally. The test image is the ultrasonic carotid artery image of human body, and we have verified its effect on intima/adventitia starting points tracking.

C2DPCA & R2DLDA for Face Recognition (얼굴 인식 시스템을 위한 C2DPCA & R2DLDA)

  • Yun, Tae-Sung;Song, Young-Jun;Kim, Dong-Woo;Ahn, Jae-Hyeong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.18-25
    • /
    • 2010
  • The study has proposed a method that simultaneously takes advantage of each projection matrix acquired by using column-directional two-dimensional PCA(C2DPCA) and row-directional two-dimensional LDA(R2DLDA). The proposed method can acquire a great secure recognition rate, with no relation to the number of training images, with acquired low-dimensional feature matrixes including both the horizontal and the vertical features of a face. Besides, in the alternate experiment of PCA and LDA to row-direction and column-direction respectively(C2DPCA & R2DLDA, C2DLDA & R2DPCA), we could make sure the system of 2 dimensional LDA with row-directional feature(C2DPCA & R2DLDA) obtain higher recognition rate with low dimension than opposite case. As a result of experimenting that, the proposed method has showed a greater recognition rate of 99.4% than the existing methods such as 2DPCA and 2DLDA, etc. Also, it was proved that its recognition processing is over three times as fast as that of 2DPCA or 2DLDA.

Generic Document Summarization using Coherence of Sentence Cluster and Semantic Feature (문장군집의 응집도와 의미특징을 이용한 포괄적 문서요약)

  • Park, Sun;Lee, Yeonwoo;Shim, Chun Sik;Lee, Seong Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2607-2613
    • /
    • 2012
  • The results of inherent knowledge based generic summarization are influenced by the composition of sentence in document set. In order to resolve the problem, this papser propses a new generic document summarization which uses clustering of semantic feature of document and coherence of document cluster. The proposed method clusters sentences using semantic feature deriving from NMF(non-negative matrix factorization), which it can classify document topic group because inherent structure of document are well represented by the sentence cluster. In addition, the method can improve the quality of summarization because the importance sentences are extracted by using coherence of sentence cluster and the cluster refinement by re-cluster. The experimental results demonstrate appling the proposed method to generic summarization achieves better performance than generic document summarization methods.

User-based Document Summarization using Non-negative Matrix Factorization and Wikipedia (비음수행렬분해와 위키피디아를 이용한 사용자기반의 문서요약)

  • Park, Sun;Jeong, Min-A;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.53-60
    • /
    • 2012
  • In this paper, we proposes a new document summarization method using the expanded query by wikipedia and the semantic feature representing inherent structure of document set. The proposed method can expand the query from user's initial query using the relevance feedback based on wikipedia in order to reflect the user require. It can well represent the inherent structure of documents using the semantic feature by the non-negative matrix factorization (NMF). In addition, it can reduce the semantic gap between the user require and the result of document summarization to extract the meaningful sentences using the expanded query and semantic features. The experimental results demonstrate that the proposed method achieves better performance than the other methods to summary document.

Vehicle Recognition using Non-negative Tensor Factorization (비음수 텐서 분해를 이용한 차량 인식)

  • Ban, Jae Min;Kang, Hyunchul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.136-146
    • /
    • 2015
  • The active control of a vehicle based on vehicle recognition is one of key technologies for the intelligent vehicle, and the part-based image representation is necessary to recognize vehicles with only partial shapes of vehicles especially in urban scene where occlusions frequently occur. In this paper, we implemented a part-based image representation scheme using non-negative tensor factorization(NTF) and realized a robust vehicle recognition system using the NTF feature. The result shows that the proposed method gives more intuitive part-based representation and more robust recognition in urban scene.

Off-Line Recognition of Unconstrained Handwritten Korean Words using Over-Segementation and Lexicon Driven Post-Processing Techniques (과다 분리 및 사전 후처리 기법을 이용한 한글이 포함된 무제약 필기 문자열의 오프라인 인식)

  • Jeong, Seon-Hwa;Kim, Su-Hyeong
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.5
    • /
    • pp.647-656
    • /
    • 1999
  • 본 논문에서는 오프라인 무제약 필기 한글 단어를 인식하기 위한 시스템을 제안한다. 제안된 단어 인식 시스템은 크게 다석가지 모듈-문자 분리,조합행렬생성, 특징 추출, 문자인식, 사전 후처리 -로 구성되어 있다. 문자 분리 모듈은 입력된 단어 영상을 하나의 문자보다 더 작은 이미지 조각으로 과다 분리하며 , 조합 행렬 생성모듈에서는 동적 프로그래밍 기법을 이용하여 분리된 이미지 조각들로부터 사전상의 모든 단어들과 대응되는 가능한 모든 조합을 생성한다. 문자인식모듈은 각 그룹에 대하여 일괄적으로 얻어진 특징과 유니그램을 이용하여 문자인식을 수행한다. 마지막으로 사전 후처리 모듈에서는 각 그룹에 대한 문자인식 결과와 단어 사전을 사용하여 입력단어에 대한 최종 인식 결과를 도출한다. 본 문에서 제안한 방법은 문자 분리, 문자 인식 및 후처리를 상호 보완적으로 결합함으로써 한글이 포함된 무제약 필기 문자열을 효과적으로 인식할 수 있다. 제안된 시스템의 성능을 평가하기 위하여 실제 우편 봉투 상에 쓰여진 필기 한글 단어 200개를 대상으로 실험을 하였다. 실험 결과 200개의 단어중 172개의 단어를 정인식하여 86%의 정확도를 얻을 수 있었으며 나머지 28개의 오인식된 단어들을 분석한 결과 대부분의 오류는 문자 인식기의 낮은 신뢰도 때문임을 알 수 있었다. 또한, 하나의 단어를 인식하기 위하여 약 2초가 소요되었다.

Generic Summarization Using Generic Important of Semantic Features (의미특징의 포괄적 중요도를 이용한 포괄적 문서 요약)

  • Park, Sun;Lee, Jong-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.5
    • /
    • pp.502-508
    • /
    • 2008
  • With the increased use of the internet and the tremendous amount of data it transfers, it is more necessary to summarize documents. We propose a new method using the Non-negative Semantic Variable Matrix (NSVM) and the generic important of semantic features obtained by Non-negative Matrix Factorization (NMF) to extract the sentences for automatic generic summarization. The proposed method use non-negative constraints which is more similar to the human's cognition process. As a result, the proposed method selects more meaningful sentences for summarization than the unsupervised method used the Latent Semantic Analysis (LSA) or clustering methods. The experimental results show that the proposed method archives better performance than other methods.

  • PDF

Attitude and Position Estimation of a Helmet Using Stereo Vision (스테레오 영상을 이용한 헬멧의 자세 및 위치 추정)

  • Shin, Ok-Shik;Heo, Se-Jong;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.693-701
    • /
    • 2010
  • In this paper, it is proposed that an attitude and position estimation algorithm based on a stereo camera system for a helmet tracker. Stereo camera system consists of two CCD camera, a helmet, infrared LEDs and a frame grabber. Fifteen infrared LEDs are feature points which are used to determine the attitude and position of the helmet. These features are arranged in triangle pattern with different distance on the helmet. Vision-based the attitude and position algorithm consists of feature segmentation, projective reconstruction, model indexing and attitude estimation. In this paper, the attitude estimation algorithm using UQ (Unit Quaternion) is proposed. The UQ guarantee that the rotation matrix is a unitary matrix. The performance of presented algorithm is verified by simulation and experiment.

Face Recognition using Wavelet Transform and 2D PCA (웨이브릿 변환과 2D PCA를 이용한 얼굴 인식)

  • Kim, Young-Gil;Song, Young-Jun;Chang, Un-Dong;Kim, Dong-Woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.348-351
    • /
    • 2004
  • In this paper, we propose the face recognition method using Harr wavelet transform and 2D PCA. While previous PCA computed the covariance matrix by using one dimensional vectors, 2D PCA computed the covarinace matrix by using direct two dimensional image and extracted feature vector by solving eigenvalue problem. To gain the face image having the low dimension and robust property, the proposed method uses wavelet transformation. We apply the LL band image data to 2D PCA for face recognition. The experimental results indicate that our method improves recognition rate than 2D PCA into original image.

  • PDF