본 논문에서는, 효율적인 화자 식별을 위하여 강인한 벡터 양자화 주성분 분석을 제안하였다. 제안된 방법은 화자 식별에서 특징벡터의 학습을 위한 고차원(high dimension) 문제와 이상치(Outlier)에 대한 문제를 해결 하기위하여 제안 되었다. 먼저, 제안된 방법은 M-추정을 이용하여 강인한 벡터 양자화(Vector Quantization : VQ) 에 의한 몇 개의 분리된 영역으로 데이터 공간을 나눈다. 분리된 자 영역에서 공분산 행렬로부터 강인한 주성분 분석(Principal Component Analysis)이 얻어지게 된다. 마지막으로 각 영역에서 강인한 PCA에 의하여 줄어든 차원을 갖는 변환된 특징 벡터로부터 화자의 가우시안 혼합 모델(Gaussian Mixture Model : GMM)을 구한다. 제안된 방법은 같은 성능하에서 대각 공분산 행렬을 갖는 전형적인 GMM방법과 비교할 때 더빠른 결과를 얻었으며, 데이터의 저장공간을 줄일 수 있었을 뿐 아니라, 이상치가 존재할 경우에 더욱 강인하였다.
증강현실에서 영상과 증강된 콘텐츠 간의 이질감을 줄이기 위해서 정확한 호모그래피 행렬을 추정해야 하며, 정확한 호모그래피 행렬을 추정할때 RANSAC 알고리즘이 널리 사용된다. 그러나 RANSAC 알고리즘은 랜덤 샘플링 과정을 반복적으로 거치기 때문에 불필요한 연산 과정이 발생하고 이로 인해 알고리즘의 효율이 저하된다. 이러한 단점을 극복하기 위해 DCS-RANSAC 알고리즘이 제안되었다. 제안된 DCS-RANSAC 알고리즘은 이미지를 특징점 분포 패턴에 따라 그룹으로 분류하고 각 그룹에 제약조건 문제를 적용하여 불필요한 연산 과정을 줄이고 정확도를 향상시킨 알고리즘이다. 그러나 DCS-RANSAC 알고리즘에서 사용된 이미지 그룹 데이터는 수동적인 방법을 통해 직관적으로 분류되어 있지만 특징점 분포 패턴이 다양하지 않아 분류시 정확도가 저하되는 경우가 있다. 위의 문제점을 해결하기 위해 본 논문에서는 머신러닝 기법을 통해 이미지들을 자동으로 분류하고 각 그룹마다 각기 다른 제약조건을 적용하는 MCS-RANSAC 알고리즘을 제안한다. 제안하는 알고리즘은 머신러닝 기법을 사용하여 전처리 단계에서 이미지를 분류하고 분류된 이미지에 제약조건을 적용시켜 알고리즘의 처리시간을 줄이고 정확도를 향상시켰다. 실험 결과 본 논문에서 제안하는 MCS-RANSAC은 DCS-RANSAC 알고리즘에 비해 수행시간이 약 6% 단축되었고 호모그래피 오차율은 약 15% 줄어들었으며 참정보 비율은 2.8% 증가한 것으로 확인되었다.
이 논문은 얼굴인식을 수행하기 위해서 이미 잘 알려진 주성분 분석법과 선형판별 분석법에 레이디얼 기저 함수 신경망을 결합한 인식 알고리즘을 제시하였다. 입력된 원래의 얼굴영상은 주성분분석법을 통하여 차원을 줄인 고유 얼굴 가중치를 산출한다. 이 가중치 벡터를 선형판별 분석법의 입력데이터로 사용하여 선형판별분석의 변환행렬을 계산할 때 클래스 내의 분산행렬에서 특이점이 발생하지 않도록 하면서 특징벡터를 산출하여 인식을 수행하였다. 두 번째 시도에서는 선형판별분석법에 의해 생성된 특징벡터를 레이디얼 기저 함수 신경망에 입력하여 학습하고 얼굴인식을 수행하였다. ORL DB의 얼굴영상에 대해 실험한 결과 93.5%의 인식률을 얻을 수 있었다.
본 논문에서는 얼굴 인식을 위한 새로운 저차원 특징 표현 기법을 제안하였다. 선형판별기법(LDA)는 인기있는 특징추출 기법이다. 하지만 고차원 데이터의 경우에 계산적인 복잡도가 높고 샘플의 개수가 적은 경우 역행렬을 구할 수 없는 특이행렬문제에 직면한다. 이러한 문제들을 해결하기 위해 일반적인 선형판별기법과 다르게 우리는 이차원 이미지 공분산 행렬을 구한 다음 직접선형판별기법(dirct LDA)을 적용하였으며 이것을 2D-DLDA라고 부른다. ORL 얼굴데이터베이스를 사용하여 실험한 결과 기존의 직접선형판별기법보다 성능이 우수함을 확인하였다.
본 논문은 3차원 모델 표면의 특징 곡률(Feature Curvature) 정보를 이용하여 3차원 거리정보 데이터(Range Image)를 자동으로 정합하는 효율적인 방법을 제안하고 그 성능을 분석하였다. 제안한 알고리즘은 3차원 데이터에 대한 거리정보의 물리적 특성인 가우스 곡률(Gaussian Curvature)을 이용하여 모델의 특징점을 검출하고, 공분산 행렬(Covariance Matrix)을 이용하여 각 데이터의 지역좌표계(Local Coordinate System) 사이의 변위를 계산한다. 3차원 형상 취득장치의 카메라 위치는 3차원 데이터와 투영된 2차원 영상과의 사영행렬(Projection Matrix) 관계식으로 계산한다. 결론부분에서는 실험결과를 기존 연구방법과 비교하여 제안된 방법이 더 빠르고 정확하게 정합하는 결과를 보임으로써 3차원 물체인식이나 모델링에 응용성을 제시하였다.
파노라마 영상은 카메라 시야각의 제한을 극복할 수 있으므로 로봇 비전, 스테레오 카메라, 보안 감시 등의 분야에서 효율적으로 연구되고 있다. 파노라마 영상은 사람의 시야각 이상의 넓은 화각을 가진 영상을 구현할 수 있으며 시야각의 현장감을 중심으로 실제로 현장에 있는 듯한 실감 공간을 제공하는 기술이다. 영상에서 기하학적 변화에 강인한 특징점 및 대응점을 검출하고 호모그래피 행렬을 추정하는데 있어서 모든 대응점을 사용하면 연산량이 많아지고 정확한 호모그래피 행렬을 추정하기 어렵다. 따라서 본 논문에서는 전처리 과정에서 입력 영상들의 히스토그램을 비교 분석하여 유사도가 높은 중첩되는 영역을 추정하며 특징점을 검출하기 위해 SURF 알고리즘을 사용하였다. 또한 영상을 입력하는 순서를 해결하여 순서에 제약 없이 영상을 입력하여 파노라마를 생성할 수 있도록 하였다.
최근 많은 지능형 보안 시나리오 및 범죄수사에서는 사진이 아닌 얼굴 영상과 다수의 정면 사진과의 매칭을 요구한다. 기존의 얼굴 인식 시스템은 이러한 요구를 충분히 충족시킬 수 없다. 본 논문에서는 동일 인물의 스케치와 사진 간의 양식 차이를 줄임으로써, 이질적 얼굴 인식 시스템의 성능을 향상시키는 알고리즘을 제안한다. 제안하는 알고리즘은 텍스처 기술자들(그레이 레벨 동시 발생 행렬, 멀티스케일 지역 이진 패턴)을 통하여 영상의 텍스처 특징들을 각각 추출하고, 이를 바탕으로 고유특징 정규화 및 추출기법을 통해 변환 행렬을 생성하게 된다. 이렇게 생성된 벡터들 간 계산된 스코어 값은 스코어 정규화 방식들을 통하여 최종적으로 스케치 영상의 신원을 인식하게 된다.
이동하는 스마트폰이나 로봇의 단안 카메라를 이용하여 연속적으로 촬영된 이미지들을 분석하여 카메라의 위치를 추정하는 것은 메타버스나 이동 로봇, 사용자 위치 서비스에서 매우 중요하다. 지금까지는 PnP 관련 기술들을 적용하여 위치를 계산하였는데, 본 논문에서는 연속된 영상들에 적용된 에피폴라 기하학에서의 필수 행렬을 이용하여 카메라의 이동 방향을 구하고 기하학적인 수식 계산을 통해 카메라의 연속적인 이동 위치를 추정하는 방법을 새롭게 제안하였고, 시뮬레이션을 통해 그 정확성을 검증하였다. 이 방식은 기존의 방식과는 전혀 다른 방법으로 두 개 이상의 영상에서 하나 이상의 일치되는 특징점만 있어도 적용할 수 있는 특징이 있다.
본 연구에서는 뉴우턴법과 모멘트를 이용한 수정된 고정점 알고리즘의 독립성분분석기법을 이용한 영상의 특징추출을 제안하였다. 여기서 뉴우턴법은 엔트로피 최적화로부터 유도된 기법으로 그 계산을 간략화하여 역혼합행렬의 빠른 경신을 위함이고, 모멘트는 접선을 구하는 과정에서 함수의 기울기변화 계산에서 발생하는 발진을 줄여 좀 더 빠른 학습을 위함이다. 제안된 기법을 13개 자연영상들로부터 선택된 12×12 픽셀(pixel)의 10,000개 패치를 대상으로 시뮬레이션 한 결과, 추출된 16×16픽셀의 160개 독립성분 기저벡터 각각은 자연영상들에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다. 또한 모멘트의 이용으로 개선된 특징추출을 얻을 수 있었다.
본 논문에서는 동영상을 대상으로 하는 기존의 시각주의 시스템의 성능을 향상시킨 새로운 시스템에 대하여 설명한다. 제안하는 시스템은 기존의 시스템이 가지고 있던 한계점인 서로 반대되는 특징을 가지는 색상에서 하나의 특징만을 고정적으로 선택하던 것을 극복하여, 서로 반대되는 특징 중 현저함이 더 높은 색상 특징을 선택하여 입력 들어오는 영상에 적응적인 현저함 추출을 하였다. 도한 시간 현저함 정보를 추가적으로 고려할 수 있도록 하여 동영상에 대한 처리도 가능하도록 하였고, 성능 평가 시 인간을 대상으로 한 설문 조사 실험을 추가하여 보다 인간의 시각 인식과 유사한 시스템임을 증명하였다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.