KIPS Transactions on Software and Data Engineering
/
v.2
no.11
/
pp.795-800
/
2013
Early detection of oestrus in Korean cows is one of the important issues in maximizing the economic benefit. Although various methods have been proposed, we still need to improve the performance of the oestrus detection system. In this paper, we propose a video surveillance system which can detect unusual behavior of multiple cows including the mounting activity. The unusual behavior detection is to detect the dangerous or abnormal situations of cows in video coming in real time from a surveillance camera promptly and correctly. The prototype system for unusual behavior detection gets an input video from a fixed location camera, and uses the motion vector to represent the motion information of cows in video, and finally selects a SVDD (one of the most well-known types of one-class SVM) as a detector by reinterpreting the unusual behavior into an one class decision problem from the practical points of view. The experimental results with the videos obtained from a farm located in Jinju illustrate the efficiency of the proposed method.
Proceedings of the Korean Information Science Society Conference
/
2006.06b
/
pp.148-150
/
2006
최근 모바일 디바이스의 기능이 다양해지면서 현대인에게 없어서는 안 될 필수품이 되었다. 모바일 디바이스의 사용영역이 널어지면서 늘어나는 개인 정보의 활용에 대한 관심이 집중되고 있다. 본 논문에서는 모바일 디바이스에서 사용자의 행동 패턴 분석 및 요약을 위한 지능형 에이전트를 제안한다 사용자의 다양한 행동 및 상태 패턴 분석을 위해 협력적 모듈 베이지안 네트워크를 사용한다. 협력적 모들 베이지안 네트워크는 비슷한 유형의 패턴끼리 모듈로 설계해 상호 협력적으로 작동하여 사용자의 특이성을 추론한다. 사용자에 기억에 남을 만한 특이성를 선택하기 위해 Noisy-OR gate를 적응하여 계산한 특이성간의 연결 강도와 특이성의 우선순위를 바탕으로 사용자의 하루 동안의 행동을 요약하여 구성한다. 추론을 위한 프로토타입을 작성하고 시나리오를 바탕으로 제안한 방법의 유용성을 보인다.
In this paper, we propose a method for effectively detecting specific behavior. The proposed method detects outlying behavior based on the game players' characteristics. These characteristics are captured non-invasively in a general game environment and add keystroke based on repeated pattern. In this paper, cameras were used to analyze observed data such as facial expressions and player movements. Moreover, multimodal data from the game players was used to analyze high-dimensional game-player data for a detection effect of repeated behaviour pattern. A support vector machine was used to efficiently detect outlying behaviors. We verified the effectiveness of the proposed method using games from several genres. The recall rate of the outlying behavior pre-identified by industry experts was approximately 70%. In addition, Repeated behaviour pattern can be analysed possible. The proposed method can also be used for feedback and quantification about analysis of various interactive content provided in PC environments.
Proceedings of the Korea Information Processing Society Conference
/
2009.04a
/
pp.173-176
/
2009
본 논문에서는 감시시스템이 갖추어진 환경 내에서 발생할 수 있는 특이 행동을 효율적으로 감지하기 위한 기법을 제시한다. 최근 대형 범죄 및 방화 사건 등의 방지목적으로 DVR 의 단순 녹화를 벗어나 지능형 감시시스템을 도입하려는 연구가 활발히 진행되고 있다. 그러나 이러한 시스템들은 아직 초기 연구 단계에 있으며 영상내의 관심물체 추출을 위한 전경과 배경의 분리 및 추적 단계에 그치고 있다. 이에 본 논문에서는 가우시안 혼합 모델을 통하여 전경과 배경을 분리하고, 관심영역에 한해서 Optical Flow 기법을 이용하여 폭력상황과 같은 특이 행동의 감지 여부를 판단 할 수 있는 방법에 대해 실험을 통해 평가하였다.
This paper proposes an intelligent surveillance system to recognize suspicious patterns of the human behavior by using the Hidden Markov Model. First, the method finds foot area of the human by motion detection algorithm from image sequence of the surveillance camera. Then, these foot locus form observation series of features to learn the HMM. The feature that is position of the human foot is changed to each code that corresponds to a specific label among 16 local partitions of image region. Therefore, specific moving patterns formed by the foot locus are the series of the label numbers. The Baum-Welch algorithm of the HMM learns each suspicious and specific pattern to classify the human behaviors. To recognize the inputted human behavior pattern in a test image, the probabilistic comparison between the learned pattern of the HMM and foot series to be tested decides the categorization of the test pattern. The experimental results show that the method can be applied to detect a suspicious person prowling in corridor.
Hyun-Su Hwang;Hyoun-Gi Cha;Naeyoung Kim;Hyungsoo Seo
Korean Journal of Environment and Ecology
/
v.37
no.6
/
pp.418-428
/
2023
This study was conducted to clarify the daily activity patterns overlap between hikers and mammals from 2015 to 2019 in the Baekdudaegan protected area. To investigate relationship behaviors between hikers and mammals, we set the camera traps on the ridge of the Baekdudaegan protected area. Daily activity patterns of yellow-throated marten (Martes flavigula) and Siberian chipmunk (Eutamias sibiricus) were highly overlapped with hiker total study periods. Moreover, daily activity patterns of Siberian roe deer (Caperohus pygargus) and water deer (Hydropotes inermis) were highly overlapped with hikers only in spring. In winter, daily activity patterns of wild boar (Sus scrofa) were overlapped with hikers. However, leopard cat (Prionailurus bengalensis), raccoon dog (Nyctereutes procyonoides), and Eurasian badger (Meles leucurus) did not significantly overlap with hikers during the study periods. The daily activity patterns of 8 mammals differed by species-specific behavior and temporal characteristics. Overlap of daily activity patterns between mammals and hikers were differed in each season. Differences in daily activity pattern overlap between mammals and humans may lead to differences in human impact on mammal populations. Information on the interaction between hikers and mammals on species-specific and temporal-specific behavior could be basic ecological data for management and conservation of mammal populations and their habitats.
Proceedings of the Korean Information Science Society Conference
/
2007.10c
/
pp.475-479
/
2007
본 논문은 Hidden Markov Model을 사용하여 사람의 특정한 행동을 인식하여 사용자에게 알려주는 지능형 영상 감시 시스템을 제안한다. 본 방법에는 카메라를 통해 입력된 영상에서 사람 영역을 찾은 후 발 영역만을 추출하여 특징이 되는 관측열을 생성한다. 특징 영역은 입력 영상의 각 프레임을 16개의 영역으로 나누어 발바닥이 위치한 곳의 코드를 읽어 사용하고, 인식하고자하는 패턴 행동들에 대해서는 각각의 관측열을 구하고 HMM의 Baum-Welch 알고리즘을 사용하여 학습한다. 인식에는 전향 알고리즘을 사용하여 입력된 행동과 학습된 행동을 확률적으로 비교하므로써 영상 내의 행동이 어떤 패턴 행동인지를 결정하여 출력하도록 한다. 제시된 방법은 복도에서 사람의 특정 행동을 인식하는데 성공적으로 적용될 수 있음을 실험을 통해 확인 하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1997.10a
/
pp.83-86
/
1997
우리는 자연계에서 새나 어류가 무리지어서 다니는 특이한 모습을 볼 수 있다. 본 논문을 복수 에이전트 모빌 로봇을 이용하여 이들이 효율적인 전략적 규칙으로부터 이런 복잡한 행동의 결과를 나타낼 수 있음을 보여준다. 모의 실험된 무리는 분산된 행동 모델로 구현되었으며 각각의 모빌 로봇간의 상대적으로 단순한 상호작용의 결과이다. 또한 여기서 모의 실험된 각각의 모빌 로봇은 동적인 환경을 감지함에 따라 움직이는 독립된 개체로서 자신의 움직임을 결정한다.
Proceedings of the Korean Information Science Society Conference
/
2003.04a
/
pp.539-541
/
2003
본 논문에서는 컨텐츠 사이트에서 디지털 컨텐츠를 보호하기 위하여 사용자 행동 패턴을 분석을 이용해 특이한 성향을 보이는 사용자를 탐지하기 위한 모델을 제시하였다. 사용자의 행동 패턴을 분석하기 위한 탐지 규칙(detection rule)으로 Syntactic Rule과 Semantic Rule을 정의하였다. 사용자 로그 분석 결과 탐지 규칙에 대한 위반 정도가 일정 범위를 벗어나는 사용자를 비정상적인 사용자로 추정하였다. 또한 제안 모델은 eCRM 시스템에서 이탈 가능성이 있는 고객 집단을 사전에 탐지하여 고객으로 유지하기 위한 promotion 전략 수립에 응용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.