• Title/Summary/Keyword: 특이적 마커

Search Result 131, Processing Time 0.028 seconds

Comparison of Gene Expression in Larval Fat Body of Helicoverpa assulta in Different Temperature Conditions (온도변화에 따른 담배나방 유충 지방체의 유전자 발현 비교 분석)

  • Cha, Wook Hyun;Kim, Kwang Ho;Lee, Dae-Weon
    • Korean journal of applied entomology
    • /
    • v.57 no.3
    • /
    • pp.165-175
    • /
    • 2018
  • Insects are known to live at wide range of temperature, but can not survive when they are exposed to over $40^{\circ}C$ or below supercooling point. The larvae of Helicoverpa assulta have been reared at high ($35^{\circ}C$), low (3 to $10^{\circ}C$), and room temperature ($25^{\circ}C$; control). To identify stress-related genes, the transcriptomes of fat body have been analyzed. Genes such as cuticular proteins, fatty acyl ${\Delta}9$ desaturase and glycerol 3 phosphate dehydrogenase were up-regulated whereas chitin synthase, catalase, and UDP-glycosyltransferase were down-regulated at low temperature. Superoxide dismutase, metallothionein 2, phosphoenolpyruvate carboxykinase and trehalose transporter have been up-regulated at high temperature. In addition, expressions of heat shock protein and glutathione peroxidase were increased at high temperature, but decreased at low temperature. These temperature-specific expressed genes can be available as markers for climate change of insect pests.

Identification of specific SNP molecular marker from Cudrania tricuspidata using DNA sequences of chloroplast TrnL-F region (구지뽕 나무의 엽록체 TrnL-F 영역 염기서열 분석을 통한 특이적 SNP 분자마커의 확인)

  • Lee, Soo Jin;Shin, Yong-Wook;Kim, Yun-Hee;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.135-141
    • /
    • 2017
  • Cudrania tricuspidata Bureau is a widely used medicinal perennial woody plant. For conservation and germplasm utilization of the plant, it is imperative to obtaining information regarding the genetic diversity of the plant populations. Although C. tricuspidata is an important medicinal plant registered in South Korea, no molecular markers are currently available to distinguish Korean-specific ecotypes from other ecotypes of different countries. In this study, we developed single nucleotide polymorphism (SNP) markers derived from chloroplast genomic sequences to identify distinct Korean-specific ecotypes of C. tricuspidata via the amplification refractory mutation system (ARMS)-PCR analyses. Molecular authentication of twelve C. tricuspidata ecotypes from different regions was performed, using DNA sequences in the trnL-F chloroplast intergenic region. The SNP markers developed in this study are useful for rapidly identifying specific C. tricuspidata ecotypes from different regions.

Analysis of Genetic Variation in the Small Subunit Ribosomal RNA Gene of Euplotes Ciliates for Developing Species Diagnostic Molecular Marker (종 식별 분자 마커 개발을 위한 섬모충류 Euplotes의 small subunit ribosomal RNA 변이성 분석)

  • Kim, Sun-Young;Kim, Se-Joo;Min, Gi-Sik;Yang, Eun-Jin;Yoo, Man-Ho;Choi, Joong-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.225-233
    • /
    • 2007
  • To verify which loop regions of 18S rRNA gene are suitable as species-specific genetic markers in ciliates, we analyzed the genetic variation of 18S rRNA gene among 9 Euplotes species (Hypotrichia : Ciliophora). In our result, no inter-specific variation was detected from V1, V3 and V5 regions, and the length of V7 and V8 are 44 bp and 79 bp, respectively, which are too short to make genetic marker. In contrast, V2 and V4 may be good candidate segments of species-specific diagnostic molecular markers because these two regions are most variable ($1.75{\sim}20.61%$) and showed good inter-specific phylogeny. Furthermore, the sequences of V2 and V4 are 123 bp and 306 bp, respectively in length which are enough to make species-specific marker.

Identification of Pleurotus ostreatus cultivars with the application of multiplex-simple sequence repeat markers (Multiplex SSR마커를 이용한 느타리(Pleurotus ostreatus) 품종 판별)

  • Choi, Jong In;Jung, Hwa Jin;Na, Kyeong sook;Oh, Min-Ji;Kim, Min-Keun;Ryu, Jae-San
    • Journal of Mushroom
    • /
    • v.19 no.1
    • /
    • pp.76-80
    • /
    • 2021
  • To develop a method for the differentiation of Pleurotus ostratus cultivars, the multiplex-simple sequence repeat (SSR) primer set based on the SSRs obtained from whole genomic DNA sequence analysis was designed with two polymerase chain reaction (PCR) primer sets. These SSR primer sets were employed to distinguish 10 cultivars and strains. Twenty polymorphic markers were selected based on the genotyping results. PCR with each primer produced 1-4 distinct bands ranging in size from 150 to 350 bp, which was within the expected range. However, since a sole SSR marker was unable to detect polymorphisms in every cultivar, multiplex PCRs with composite PCR primer sets were employed. The multiplex primer, "166+115," completely discriminated 12 cultivars and strains with 40 loci, which were 12 more than the simple arithmetic addition of each locus of the primers 115 and 166. These results might be useful to provide an efficient method for the differentiation of P. ostreatus cultivars with separate PCRs for the quality control of spawn and protection of breeders' rights.

Analysis of Genetic Diversity in Thirteen Turfgrass Cultivars Cultivated at Golf Courses Using RAPD Markers (RAPD마커를 이용한 국내골프장의 잔디 13 품종의 유전적 다양성 분석)

  • Kim, Min-Jeong;Kim, Tae-Soo;Shim, Chang-Ki;Kim, Yong-Ki;Jee, Hyeong-Jin
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.57-63
    • /
    • 2012
  • This study was carried our to examine the genetic relationship of 13 commercial turfgrass cultivars using Random Amplified Polymorphic DNA to provide genetic informations more efficient golf course management. Analysis of 56 random hexamer primers generated 13 to 54 polymorphic bands among the 13 cultivars with an average of 30.7 bands per primer. The results of cluster analysis based on RAPDs revealed that three major variety groups: Group I - 'Shadow II', 'Aurora Gold', 'Little Bighorn Blue', 'PennA-1', and 'PennA-4'; Group II - 'Midnight II', 'Prosperity', 'Moon light SLT', 'Bright star SLT', and 'Silver dollar'; and Group III - 'Olympic Gold', 'Silver Star', and 'Tar Heel II'. The genetic similarity coefficients among 13 turfgrass cultivars ranged from 0.039 to 1.0 with highest coefficient in Group III. Studies on morphological characters and the effective molecular markers such as sequence characterized amplified regions are further needed to identify relationships and genetic diversities within species and among species.

Suppression of metastasis-related ERBB2 and PLAU expressions in human breast cancer MCF 7 cells by fermented soybean extract (발효대두추출물의 인간 유방암 MCF7 세포에서 전이 관련 ERBB2와 PLAU 발현 억제 효과)

  • Park, Jameon;Kim, Han Bok
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.320-324
    • /
    • 2018
  • Chunkookjang, fermented soybean is rich in diverse oligopeptides which derived from cleavage of soybean proteins during fermentation. Microarray data containing differently expressed genes in breast cancer cells treated with fermented soybean extract and well known breast cancer metastasis markers were combined, and a new network was constructed. It is used to check interactions between the marker proteins and the differently expressed genes. Based on the network analysis, PLAU (plasminogen activator, urokinase, uPA) and ERBB2 (epidermal growth factor receptor 2) are chosen as possible metastasis genes. We treated breast cancer MCF7 cells with fermented soybean extract and measured expression levels of PLAU and ERBB2. Fermented soybean extract suppressed PLAU and ERBB2 expressions conspicuously. In the cancer cells treated with fermented soybean extracts, an inflammation marker, NO production was also reduced. It will be interesting to find specific peptides to suppress PLAU and ERBB2 expressions in human breast cancer cells.

Molecular Markers for the Rapid Detection of Colletotrichum coccodes, an Anthracnose Pathogen of Tomato (토마토 탄저병균 Colletotrichum coccodes 신속 검출 분자 마커)

  • Kim, Jun Young;Woon, Jang Si;Kim, Hyun Ju;Kim, Seong Hwan
    • The Korean Journal of Mycology
    • /
    • v.46 no.2
    • /
    • pp.186-192
    • /
    • 2018
  • Rapid and accurate detection methods for Colletotrichum coccodes, an anthracnose pathogen of pepper and tomato, were developed using PCR. A specific primer set, coccoTef-F/coccoTef-R, which was constructed by analyzing tef-$1{\alpha}$ genes from 13 species and 22 strains of Colletotrichum, could specifically detect C. coccodes at a level of 10 ng by conventional PCR method and at 10 pg by real-time PCR. The PCR-based methods were also capable of detecting C. coccodes in pepper and tomato seeds artificially infected with the pathogen. The developed PCR methods can be applied for rapid and accurate inspection of C. coccodes in the seeds intended for export or import.

Investigation of the Molecular Diagnostic Market in Animals (동물 분자 진단 시장의 동향)

  • Park, Chang-Eun;Park, Sung-Ha
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.1
    • /
    • pp.26-33
    • /
    • 2019
  • Recently, the rapid growth of the companion animal market has led to the development of animal disease diagnosis kits. Therefore, the utility of the introduction of biomarkers for the development of animal molecular diagnostics is being reevaluated. A good biomarker should be precise and reliable, distinguish between normal and diseased states, and differentiate between different diseases. Recently reported genetic markers, tumor markers (cell free DNA, circulating tumor cells, granzyme, and skin tumors), and others (brucellosis, programmed death recovery-1, symmetric dimethylarginine, periostin, and cysteinyl leukotrien) have been developed. The biomarkers are used for risk prediction or for the screening, diagnosis, and monitoring of disease progression. The most important criteria for related biomarkers are disease specificity. Many potential biomarkers have emerged from laboratory and test studies, but they have not been validated in independent or large-scale clinical studies. Candidate biomarkers evaluate disease associations, verify the effectiveness of biomarkers for early detection and disease progression, and incorporate them into humans and animals. In the future, it will be necessary to reevaluate the utility of well-structured biomarker-based research and study the development of kits that can be used in on-site tests in accordance with the trends introduced in the diagnosis of animal diseases.

An Introduction to Microsatellite Development and Analysis (Microsatellite 개발 및 분석법에 대한 소개)

  • Yun Young-Eun;Yu Jeong-Nam;Lee Byoung-Yoon;Kwak Myounghai
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.4
    • /
    • pp.299-314
    • /
    • 2011
  • The choice of molecular markers is the first step when selecting experimental plans in the field of population genetics. The popular molecular markers in population genetic studies are mainly allozyme, RAPD, RFLP, AFLP, microsatellite, SNP and ISSR. Among these, microsatellites are frequently found in nuclear, chloroplast and mitochondrial genome, showing a high level of polymorphism and nuclear microsatellites are codominant. Thus, it is a favorable molecular marker for population structure analyses and genetic diversity studies. Microsatellites are composed of tandem repeated 1~6 base pair nucleotide motifs and can be easily amplified by PCR reactions using locus specific primers. Because microsatellites have low cross-species transferability, however, they are only applicable between phylogenetically close species. In wild plants, the lack of genomic information and the high development cost of the microsatellite obstruct the wider use of microsatellites in plant population genetics research. In this review, we introduce the basis for microsatellite markers, the development process, and analytical methods as well as evolutionary models and their applications. In addition, possible genotyping errors which lead to erroneous conclusions are discussed.

Identification and Genetic Diversity of Korean Tomato Cultivars by RAPD Markers (한국 내 토마토 재재종의 RAPD에 의한 동정과 유전적 다양성)

  • Huh, Man-Kyu;Youn, Sun-Joo;Kang, Sun-Chul
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • Cultivated tomato, Lycopersicum esculentum, is a very important crop. We selected 36 cultivars and studied them for identification and polymorphism by employing random amplified DNA (RAPD) analysis with 80 oligonucleotide primers. Of the 80 primers, 36 primers (45.0%) were polymorphic. Detection of polymorphism in cultivated tomato opens up the possibility of development of its molecular map by judicious selection of genotypes. Molecular markers can also be used for cultivar identification and protection of the plant breeder's intellectual property rights (plant breeders' rights, PBRs). As an example, DNA polymorphism using OPC-13 primer that did not produce the OPC-13-01 band was only found in Junk Pink and Ailsa Craighp cultivars. OPA-12-03 and OPB-15-07 were fragments specific to the TK-70 cultivar and were absent in other cultivars. DNA polymorphism in cultivated tomato in this study was correlated with a type of inflorescence, although some cultivars had exceptions. These approaches will be useful for developing marker-assisted selection tools for genetic enhancement of the tomato plant for desirable traits.