DOI QR코드

DOI QR Code

Identification and Genetic Diversity of Korean Tomato Cultivars by RAPD Markers

한국 내 토마토 재재종의 RAPD에 의한 동정과 유전적 다양성

  • Received : 2010.08.31
  • Accepted : 2010.11.11
  • Published : 2011.01.30

Abstract

Cultivated tomato, Lycopersicum esculentum, is a very important crop. We selected 36 cultivars and studied them for identification and polymorphism by employing random amplified DNA (RAPD) analysis with 80 oligonucleotide primers. Of the 80 primers, 36 primers (45.0%) were polymorphic. Detection of polymorphism in cultivated tomato opens up the possibility of development of its molecular map by judicious selection of genotypes. Molecular markers can also be used for cultivar identification and protection of the plant breeder's intellectual property rights (plant breeders' rights, PBRs). As an example, DNA polymorphism using OPC-13 primer that did not produce the OPC-13-01 band was only found in Junk Pink and Ailsa Craighp cultivars. OPA-12-03 and OPB-15-07 were fragments specific to the TK-70 cultivar and were absent in other cultivars. DNA polymorphism in cultivated tomato in this study was correlated with a type of inflorescence, although some cultivars had exceptions. These approaches will be useful for developing marker-assisted selection tools for genetic enhancement of the tomato plant for desirable traits.

재배종 토마토(Lycopersicum esculentum)는 중요 작물의 하나이다. 36 재배종에 대해 80개 RAPD (random amplified polymorphic DNA) 마커로 동정과 다형성을 조사하였다. 80개 마커 중 36개(45.0%)는 다형성을 나타내었다. 재배종 토마토에서 다형성의 탐지는 유익한 유전자형의 선택에 의한 분자 지도 발전 가능성을 제공할 수 있다. 분자 마커는 역시 식물 육종 지적 권리(PBRs)의 동정과 보호를 위해 사용될 수 있다. 한 예로써 OPC-13 시발체를 사용한 DNA 다형은 Junk Pink와 Ailsa Craighp 품종은 OPC-13-01 밴드가 결여되어 있다. OPA-12-03와 OPB-15-07는 TK-70 품종에 특이 마커로 다른 품종에는 없다. 본 연구의 재배종 토마토에서 DNA 다형은 일부 예외는 있지만 개화 타입과 관련이 있다. 이런 접근은 바람직한 토마토 품종 육성에 유전적 정보를 높이는데 유익할 것으로 사료된다.

Keywords

References

  1. Ballester, J. and M. C. de Vicente. 1998. Determination of F1 hybrid seed purity in pepper using PCR-based markers. Euphytica 103, 223-226. https://doi.org/10.1023/A:1018372523343
  2. Carelli, B. P., L. T. S. Gerald, F. G. Grazziotin, and S. Echeverrigaray. 2006. Genetic diversity among Brazilian cultivars and land laces of tomato Lycopersicon esculentum Mill. revealed by RAPD markers. Genet. Res. Crop. Evol. 53, 395-400. https://doi.org/10.1007/s10722-004-0578-9
  3. Ciccarese, F., M. Amenduni, D. Schiavone, and M. Cirulli. 1998. Occurrence and inheritance of resistance to powdery mildew (Oidium lycopersici) in Lycopersicon species. Plant Pathology 47, 417-419. https://doi.org/10.1046/j.1365-3059.1998.00254.x
  4. Cooke, R. J., G. M. M. Bredemeifer, M. W. Ganal, R. Peeters, P. Isaac, and S. Rendell. 2003. Assessment of the uniformity of wheat and tomato varieties at DNA microsattellite loci. Euphytica 132, 331-341. https://doi.org/10.1023/A:1025046919570
  5. Demeke, T., R. P. Adams, and R. Chibbar. 1992. Potential taxonomic use of random amplified polymorphic DNA (RAPD): a case study in Brassica. Theor. Appl. Genet. 84, 990-994.
  6. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) Version 3.5s. Distributed by the Author. Department of Genetics, Univ. of Washington, Seattle.
  7. Ghislain, M., D. Zhang, D. Fajardo, Z. Huaman, and R. J. Hijmans. 1999. Marker-associated sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genet. Res. Crop. Evol. 46, 547-555. https://doi.org/10.1023/A:1008724007888
  8. Huang, C. C., Y. Y. Cui, C. R. Weng, P. Zabel, and P. Lindhout. 2000. Development of diagnostic PCR markers closely linked to the tomato powdery mildew resistance gene Ol-1 on chromosome 6 of tomato. Theor. Appl. Genet. 101, 918-924. https://doi.org/10.1007/s001220051562
  9. Lee, W. S., B. S. Kim, and H. Y. Lee. 2002. Horticultural characteristics of valuable strains in cherry tomato. Korean J. Hort. Sci. Techol. 20, 74.
  10. Helentjaris, T., G. King, M. Slocum, C. Siedenstrang, and S. Wegman. 1985. Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied breeding. Plant Mol. Biol. 5, 109-118. https://doi.org/10.1007/BF00020093
  11. Ilbi, H. 2003. RAPD markers assisted varietal identification and genetic purity test in pepper, Capsicum annuum. SciHort. 97, 211-218. https://doi.org/10.1016/S0304-4238(02)00158-9
  12. Kresovich, S., J. G. K. Williams, J. R. McFerson, E. J. Routman, and B. A. Schaal. 1992. Characterization of genetic identities and relationships of Brassica oleraceae L. via a random amplified polymorphic DNA assay. Theor. Appl. Genet. 85, 190-196.
  13. Macko, A. and D. Grzebelus. 2008. DcMater trasposon display markers as a tool for diversity evaluation of carrot breeding materials and for hybrid seed purity testing. J. Appl. Genet. 49, 33-39. https://doi.org/10.1007/BF03195246
  14. Martinez, S. G., L. Andreani, M. G. Gusano, F. Geuna, and J. J. Ruiz. 2006. Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome 49, 648-656. https://doi.org/10.1139/G06-016
  15. Molnar, S. J., L. E. James, and K. J. Kasha. 2000. Inheritance and RAPD tagging of multiple genes for resistance to net blotch in barley. Genome 43, 224-231. https://doi.org/10.1139/gen-43-2-224
  16. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70I, 3321-3323. https://doi.org/10.1073/pnas.70.12.3321
  17. Paran, I., M. Horowitz, D Zamir, and S. Wolf. 1995. Random amplified polymorphic DNA markers are useful for purity determination of tomato hybrids. HortScience 30, 377.
  18. Rick, C. M. 1990. J. W. de Verna, and R. T. Chetelet. 1990. Experimental ingression to the cultivated tomato from related wild nightshades, pp. 19-30, In Bennett, A. B. and S. D. O'Neill (eds.), Horticultural biotechology. New York.
  19. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425. https://doi.org/10.1093/molbev/msl072
  20. Subramanian, V., S. Gurtu, R. C. Nageswara, and S. H. Higam. 2000. Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43, 646-660.
  21. Williams, J. G. K, A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531-6535. https://doi.org/10.1093/nar/18.22.6531
  22. Yeh, F. C., R. C. Yang, and T. Boyle. 1999. POPGENE Version 1.31, Microsoft Windows-based Freeware for Population Genetic Analysis. University of Alberta, Alberta.

Cited by

  1. Assessment of genetic diversity of Mediterranean bread wheat using Randomly Amplified Polymorphic DNA (RAPD) markers vol.9, pp.2, 2011, https://doi.org/10.1016/j.jgeb.2011.10.002