DOI QR코드

DOI QR Code

Gender Comparison of Ratings of Perceived Exertion (RPE) as a Predictor of Exercise Intensity in College Students

RPE에 의한 운동강도 예측인자의 남녀 대학생 비교

  • Kim, Do-Yeon (Department of Physical Education, Pusan National University) ;
  • Lee, Jeong-Ah (Department of Physical Education, Kyung-Sung University)
  • 김도연 (부산대학교 체육교육학과) ;
  • 이정아 (경성대학교 체육학과)
  • Received : 2010.08.31
  • Accepted : 2010.10.05
  • Published : 2011.01.30

Abstract

Perceived exertion involves detection and interpretation of sensations arising from the body during physical exercise. Physiological variables such as heart rate and oxygen consumption positively correlate with ratings of perceived exertion (RPE). It is unknown whether the accuracy of predicting exercise intensity from RPE differs between men and women. Therefore, it was examined whether men or women could predict relative exercise intensity, determined by oxygen consumption, more accurately from RPE. Ten male and ten female young adult subjects aged 25.1${\pm}$3.52 yr volunteered to participate. RPE were determined by the Borg 15-category scale, and a standard Bruce treadmill protocol was used to perform graded exercise testing. There was no significant difference in slope means between males and females (p=0.501). No significant difference was observed when plotting rates of perceived exertion (RPE) vs. percentage of $VO_2$ max. The relative maximal oxygen consumptions ($VO_{2max,\;}_{rel}$) were 52.36${\pm}$7.35 ml/kg/min for males and 41.44${\pm}$6.71 ml/kg/min for females, respectively and there was a significantly high difference between the two groups in the relative $VO_{2max}$, as well as figures of 4.05${\pm}$0.36 l/min for males and 2.53${\pm}$0.39 l/min for females in the absolute $VO_{2max}$ in this study. There were no significant differences in slope, y-intercept, and standard error of estimate (SEE) between males and females. No significant difference with RPE according to exercise intensity was found between males and females. However, RPE was a useful predictor of exercise intensity in independent genders.

심박수(heart rate) 및 산소 소비량(oxygen consumption) 등의 생리학적 변수는 운동자각도(RPE)와 밀접한 관련이 있으며, RPE의 남녀차이에 의한 예측 운동강도의 정확성은 아직 밝혀지지 않고 있고, 본 연구는 남녀 대학생의 심장 혈관 및 신진대사의 반응을 평가하고 남녀의 차이를 밝히는 데 있다. 남자대학생($25.1{\pm}1.56$ yr)과 여자대학생($25.0{\pm}4.12$ yr) 각각 10명이 본 연구에 자발적으로 참여를 하였고, 본 연구를 위하여 설정된RPE는 Borg의 15 범주에서 결정을 하였으며, 점증적 운동부하(graded exercise testing)는 Bruce Treadmill Protocol을 이용하였다. 남녀의 평균 slope (p=0.501)와 RPE의 plotting rates와 최대산소섭취율(% $VO_2$max)은 유의한 차이가 나타나지 않았다. 각자의 상대적 최대산소섭취량은 남학생의 경우52.36${\pm}$7.35 ml/kg/min, 여학생은 41.44${\pm}$6.71 ml/kg/min로 나타나 두 그룹간에 유의하게 큰 차이가 있었으며, 절대적 최대산소섭취량은 남학생은 4.05${\pm}$0.36 l/min, 여학생은 2.53${\pm}$0.39 l/min로 나타나 두 그룹간에 큰 차이가 나타냈다. 남학생과 여학생간의 slope, y-intercept, SEE는 통계적으로 유의한 차이는 없었다. 본 연구에서 운동강도에 따른 남학생과 여학생의 RPE 의 차이는 유의하게 나타나지 않았다. 이상의 결과로 보아 RPE는 운동중 산소섭취량에 대한 운동강도의 예측에 남녀별 차이가 없어 유효한 예측인자라고 사료된다.

Keywords

References

  1. American College of Sports Medicine. 1998. ACSM’s Resource Manual for Guidelines for exercise testing and prescription. $3^{rd}$ Eds, Williams & Wilkins, Baltimore, MD.
  2. American College of Sports Medicine. 2008. ACSM’s guidelines for exercise testing and prescription. Lippincott Williams & Wilkins, Philadelphia, PA.
  3. Borg, G. 1998. Borg’s perceived exertion and pain scales. Human Kinetics, Champaign.
  4. Borg, G. and H. Linderholm. 1970. Exercise performance and perceived exertion in patients with coronary insufficiency, arterial hypertension and vasoregulatory asthenia. Acta. Med. Scand 187, 17-26.
  5. Bruce, R. A. 1971. Exercise testing of patients with coronary artery disease. Ann. Clin. Res. 3, 323-332.
  6. Butts, N. K. and D. Crowell. 1985. Effect of caffeine ingestion on cardiorespiratory endurance in men and Women. Res. Q Exerc. Sport 56, 301-305. https://doi.org/10.1080/02701367.1985.10605333
  7. Danielle, M. L., J. A. Faulkner, A. V. Rowlands, and R. G. Eston. 2009. Prediction of maximal oxygen uptake from submaximal ratings of perceived exertion and heart rate during a continuous exercise test: the efficacy of RPE 13. Eur. J. Appl. Physiol. 107, 1-9.
  8. Day, M. L., M. R. McGuigan, G. Brice, and C. Foster. 2004. Monitoring exercise intensity during resistance training using the session RPE scale. J. Strength Cond. Res. 18, 353-358.
  9. Demello, J. J., K. J. Cureton, R. E. Boineau, and M. M. Singh. 1987. Ratings of perceived exertion at the lactate threshold in trained and untrained men and women. Med. Sci. Sports Exerc. 19, 354-362.
  10. Doherty, M., P. M. Smith, M. G. Hughes, and D. Collins. 2001. Rating of perceived exertion during high-intensity treadmill running. Med. Sci. Sports Exerc. 33, 1953-1958 https://doi.org/10.1097/00005768-200111000-00023
  11. Dunbar, C. C., R. J. Robertson, R. Baun, M. F. Blandi, K. Metz, R. Burdet, and F. L. Goss. 1992. The validity of regulating exercise intensity by ratings of perceived exertion. Med. Sci. Sports Exerc. 24, 94-99.
  12. Easton, R. G., K. L. Lamb, G. Parfitt, and N. King. 2005. The validity of predicting maximal oxygen uptake from a perceptually-regulated graded exercise test. Eur. J. Appl. Physiol. 94, 221-227. https://doi.org/10.1007/s00421-005-1327-2
  13. Easton, R., D. Lambrick, K. Sheppard, and G. Parfitt. 2008. Prediction of maximal oxygen uptake in sedentary males from a perceptually-regulated, sub-maximal graded exercise test. J. Sports Sci. 26, 131-139. https://doi.org/10.1080/02640410701371364
  14. Easton, R. G., and J. G. Williams. 1988. Reliability of ratings of perceived effort regulation of exercise intensity. Br. J. Sports Med. 22, 153-155. https://doi.org/10.1136/bjsm.22.4.153
  15. Faulkner, J. A., G. Parfitt, and R. G. Eston. 2007. Prediction of maximal oxygen uptake from the ratings of perceived exertion and heart rate during a perceptually-regulated sub-maximal exercise test in active and sedentary participants. Eur. J. Appl. Physiol. 101, 397-407. https://doi.org/10.1007/s00421-007-0508-6
  16. Foster, C., J. A. Florhaug, J. Franklin, L. Gottschall, L. A. Hrovatin, S. Parker, P. Doleshal, and C. Dodge. 2001. A new approach to monitoring exercise testing. J. Strength Cond. Res. 15, 109-115.
  17. Green, J. M., Z. Yang, C. M. Laurent, J. K. Davis, K. Kerr, R. C. Pritchett, and P. A. Bishop. 2007. Session RPE following interval and constant-resistance cycling in hot and cool environments. Med. Sci. Sports Exerc. 39, 2051-2057. https://doi.org/10.1249/mss.0b013e318148bddf
  18. Kravitz, L., R. A. Robergs, V. H. Hayward, D. R. Wagner, and K. Powers. 1997. Exercise mode and gender comparisons of energy expenditure at self-selected intensities. Med. Sci. Sports Exerc. 29, 1028-1035. https://doi.org/10.1097/00005768-199708000-00007
  19. Noble, B. J., C. M. Maresh, and M. Ritchey. 1981. Comparison of exercise sensations between females and males. Med. Sport 14, 175-179.
  20. Noble, B. J., G. A. Borg, I. Jacobs, R. Ceci, and P. Kaiser. 1983. A category-ratio perceived exertion scale: relationship to blood and muscle lactates and heart rate. Med. Sci. Sports Exerc. 15, 523-528.
  21. Noble, B. J. and R. J. Robertson. 1996. Perceived Exertion. Champaign, IL: Human Kinetics, pp. 77-82.
  22. Pollock, M. L., D. H. Schmidt, and A. S. Jackson. 1980. Measurement of cardiorespiratory fitness and body composition in the clinical setting. Clin. Ther. 6, 12-27.
  23. Robergs, R. A. and S. O. Roberts. 1997. Exercise Physiology: Exercise, performance, and clinical applications. St. Louis, MO: Mosby-Year Book, Inc.
  24. Robertson, R. J., F. L. Goss, T. E. Auble, D. A. Cassinelli, R. J. Spina, E. L. Glickman, R. W. Galbreath, R. M. Silberman, and K. F. Metz. 1990. Cross-modal exercise prescription at absolute and relative oxygen uptake using perceived exertion. Med. Sci. Sports Exerc. 22, 653-659. https://doi.org/10.1249/00005768-199010000-00017
  25. Robertson, R. J., N. M. Monya, K. L. Sward, N. B. Millich, F. L. Goss, and P. D. Thompson. 2000. Gender comparison of RPE at absolute and reflective physiological criteria. Med. Sci. Sports Exerc. 32, 2120-2129. https://doi.org/10.1097/00005768-200012000-00024
  26. Robertson, R. J. and B. J. Noble. 1997. Perception of physical exertion: methods, mediators, and applications. Exerc. Sport Sci. Rev. 25, 407-452.
  27. Seip, R. L., D. Snead, E. F. Pierce, P. Stein, and A. Weltman. 1991. Perceptual responses and blood lactate concentration: effect of training state. Med. Sci. Sports Exerc. 23, 80-87.
  28. Skinner, J. S., R. Hutsler, V. Bergsteinova, and E. R. Buskirk. 1973. The validity and reliability of a rating scale of perceived exertion. Med. Sci. Sports Exerc. 5, 94-96.
  29. Ueda, T. and J. Kurokawa. 1995. Relationships between perceived exertion and physiological variable during swimming. Int. J. Sports Med. 16, 385-389. https://doi.org/10.1055/s-2007-973025
  30. Whaley, M. H., W. M. Thomas, L. A. Kaminsky, and J. D. Emmett. 1997. Reliability of perceived exertion during graded exercise testing in apparently healthy adults. J. Cardiopulm. Rehabil. 17, 37-42. https://doi.org/10.1097/00008483-199701000-00005
  31. Winborn, M. D., A. W. Meyers, and C. Mulling. 1988. The effects of gender and experience on perceived exertion. J. Sport Exerc. Psychol. 10, 22-31.

Cited by

  1. Factors Influencing Musculoskeletal Symptoms in Military Personnel during Basic Combat Training vol.46, pp.4, 2016, https://doi.org/10.4040/jkan.2016.46.4.523