• Title/Summary/Keyword: 특수 콘크리트

Search Result 145, Processing Time 0.03 seconds

A Study on Constructability Estimation of Multi-component High Fluidity Concrete based on Mock-up Test (모의실험체에 의한 다성분계 고유동 콘크리트의 시공성능 평가에 관한 연구)

  • Kwon, Ki-Joo;Noh, Jea-Myoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.75-82
    • /
    • 2010
  • As structures become larger, taller, and more diverse, a high degree of technology and expertise are required in the construction industry. However, it has been becoming difficult to construct under severe conditions and to fulfill the high performance needs of structures due to a lack of skilled construction engineers. To compensate for these weak points, high-performance concrete and performance specifications have been developed. The application of reliable high-fluidity concrete, which is one of these efforts, is expected to be effective in terms of overcoming severe conditions, reducing the number of workers required, and shortening the construction period. In order to apply high fluidity concrete in the field, practical mock-up tests were carried out to estimate whether self-compaction concrete could satisfy constructability needs. From the results, it was verified that the multi-component high fluidity concrete has excellent flowability in practical structures. In addition, it was shown that the temperature distribution in the concrete due to hydration heat is satisfactory. As a result, it is judged that multi-component high fluidity concrete can be utilized as an effective building material for various structures, including structures related to the electric power industry.

The consideration about the shielding effect of LEDITE (LEDITE를 이용한 방사선 차폐시설에 관한 고찰)

  • Min Je-soon;Lee Je-hee;Park heung-deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2003
  • The concrete is usually used to build a radiation therapy facility and the enough concrete thickness for high energy x-ray beam is about 1 meter. But if the space is not enough to build a radiation therapy facility with concrete, the substitute for concrete is needed, and the Ledite can be a good substitute for concrete. In this study, we compared the Ledite with the concrete. The comparing list are the needed shielding thickness, the period of construction and the cost.

  • PDF

The Effect of Paste Rate on Shaped Charges and Metal Type Liner to Explosive Jet Cutting Ability (폭발절단력에 미치는 성형폭약 및 금속성 Liner의 가소화 영향)

  • 이병일;공창식;이익주;인영수;조영곤;박근순
    • Explosives and Blasting
    • /
    • v.18 no.3
    • /
    • pp.89-97
    • /
    • 2000
  • 최근 노후화 된 콘크리트 및 털 구조물에 대하여 환경 공해가 발생하지 않는 해체 기술의 필요성이 급증하고 있어서 이에 대한 연구가 활발히 이루어지고 있다. 그 결과 콘크리트 구조물을 일시에 해체하기 위하여 사용되고 있던 화약을 이용한 발파해체공법 및 군용 폭파 공법 등으로부터 응용되어 특수한 형태의 크기로 제작된 성형폭약을 철골구조물에 부착시킨 후 이를 폭발 시켜서 순간적으로 철골구조물의 철판(또는 빔이나 기타 부자재)을 절단 해체할 수 있게 되었다. 그 동안은 성형폭약의 폭발절단 효과에 영향을 주는 요소들인 대상 구조물의 재질 및 형상, 두께와 강도 특성, 성형폭약의 형상, 폭약의 종류, 장약량, Liner의 종류, Stand-off Distance, 성형폭약의 폭 및 너비, 기폭방법에 따른 영향과 폭발 절단시 발생되는 폭풍압에 의한 진동 및 소음의 영향 등에 대한 연구가 대부분이었다. 따라서 본 연구에서는 성형폭약의 주 구성요소인 화약과 금속성 Liner를 유연성이 탁월하고 조성 성분들의 혼합성과 성형성이 우수한 가소화제를 사용하여 제작된 성형폭약의 가소화 정도가 폭발절단력에 미치는 영향을 검토하였다. 이를 위하여 본 연구는 PETN 과 RDX 화약이 각각 25wt% 및 75wt%로 흔합된 화약원료를 85wt%로 하고 폴리이소부틸렌(P.I.B) 성분이 80 wt% 이상인 폴리부텐(P.B) 7wt% 와 부틸고무 4wt% 그리고 디에칠헥실세바케이트 4wt%로 구성된 가소화제를 사용하여 실험하였다.

  • PDF

An Evaluation of Blast Resistance of Partially Reinforced CFT Columns using Computational Analysis (전산해석을 이용한 부분 보강된 CFT 기둥의 폭발저항성능 평가)

  • Kim, Han-Soo;Wee, Hae-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.503-510
    • /
    • 2015
  • In this paper, the blast resisting performance of partially reinforced CFT columns was compared with the normal CFT columns to evaluate the effect of reinforcing with steel plates. Autodyn which is a specialized hydro-code for analysis of explosion and impact was used to simulate the structural behavior of the CFT columns under the blast loadings. The interaction between concrete and surrounding steel plates was modeled with friction and join option to represent the realistic damage of columns. According to the analysis, the partially reinforced CFT column showed enhanced blast resisting performance than the normal CFT columns. Also the improvement of blast resisting performance was depended on the height of reinforcing steel plates.

Feasibility Study of Estimating Prestress Force of Grouted Tendons (종진동특성을 이용한 부착식 텐던의 긴장력 추정 타당성 연구)

  • Kim, Byeong Hwa;Jang, Jung Bum;Lee, Hong Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.103-111
    • /
    • 2010
  • A feasibility study for nondestructively estimating prestress force of a grouted tendon using axial vibrations has been investigated. Total eight prestressed concrete beams with different stress levels have been specially designed and constructed for this investigation. The various axial vibration tests have been conducted in order to extract the dynamic characteristics of the prestressed concrete beams. It turns out that the axial frequency, elastic wave velocity and elastic modulus are nonlinearly increased as the prestress force level increases. It seems that the axial vibration characteristics of the existing grouted tendons are a feasible indicator for the identification of their tensile force.

An Economic Mix Design Methodology for the Development of Concrete Strength at Low Temperature (저온에서의 콘크리트 강도 확보를 위한 경제적 배합 방안)

  • Kim, Sang-Chel;Kim, Yong-Jic;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.95-103
    • /
    • 2012
  • Precast concrete method is known to have advantages of minimizing works in the construction, controlling concrete quality easily and saving construction period due to only fabrication work in the construction field, but it needs to apply steam curing to accelerate early concrete strength. In the meanwhile, the oil cost for steam curing has been continuously increased because of political instability in the middle East and international economic shaky. Thus, this study addresses the development of precast/ prestressed concrete which has over 14MPa at 1 day age and specified concrete strength of 40MPa at low temperature, not applying steam curing. Tests were carried out in terms of material characteristics in fresh concrete and compressive strength using 3 types of cement such as Type I, Type III and rapid hardening compound cement. As results of tests, it is found that cements for rapid hardening had disadvantages with respect to slump, slump loss, and air content, but showed higher compressive strength than specified one, especially the highest value when using rapid hardening compound.

  • PDF

Evaluation of Environment Friendly High Performance Ternary Cement Concrete Deck Overlay Pavement by Experimental Construction (시험시공을 통한 친환경 고성능 3성분계 시멘트 콘크리트 교면 포장의 성능 평가)

  • Choi, In-Hyeok;Kim, Dae-Seong;Lee, Jun-Ho
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.85-93
    • /
    • 2011
  • This study experimented to evaluate the environment friendly high performance ternary cement concrete deck overlay pavement using mineral admixture such as fly ash and ground granulated blast-furnace slag. It was measured to find best binder mixing according to replacement rate of mineral admixture with compressive strength and flexural strength. After finding best binder, it is also experimented to evaluate durability on chloride penetration resistance, freezing- thawing resistance, scaling resistance of deicing chemicals, abrasion resistance, alkali-silica reactivity test and bonded environment friendly high performance ternary cement concrete deck overlay pavement experimented to evaluate bonded old deck and new concrete overlay pavement using special polymer cement mortar. In additions, bonded environment friendly high performance ternary cement concrete deck overlay pavement by experimental construction was evaluated at interchange bridge of North Yeoju. Result, examination was indicated better binding with binder replacement of cement 70%, ground granulated blast-furnace slag 15% and fly ash 15%. And special polymer cement mortar used in old deck and new overlay concrete was indicated better bonding both laboratory and construction.

Evaluation of Optimum Mix Proportion and Filling Performance of High-fluidity Concrete for SCP Module charging (SCP 모듈 충전용 고유동 콘크리트의 최적배합 도출 및 채움성능 평가)

  • Park, Gi-Joon;Kim, Sung-Wook;Park, Jung-Jun;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.452-459
    • /
    • 2017
  • In recent years, to reduce self-weight of structural elements, the use of SCP (Steel Concrete Plate) instead of prestressed concrete is increasing. Because SCP has a complicated sectional shape and includes a large number of studs, the use of high-fluidity concrete is required. Therefore, in this study, to prevent the restrained shrinkage behavior by the stud, the effects of using an expansive agent (EA) and shrinkage reducing agent (SRA) were investigated, and the optimal mixture proportions to maximize the filling capacity were determined based on the fine aggregate ratio. The test results indicated that the combined use of EA and SRA exhibited the smallest shrinkage. The ratio of the crushed sand and washed sea sand was determined to be 5:5, and the proper fine aggregate ratio was found to be 55.6%, because when the ratio was too high, a decrease in strength and an increase in shrinkage strain were expected. The high-fluidity concrete effectively filled the large-sized SCP module.

Development of Concrete and Evaluation of Properties of Combined Steel making Slag Aggregates for Offshore Structure Production (I) (해양구조물 제조를 위한 제강슬래그 골재 조합별 물성평가 및 콘크리트 개발( I ))

  • Jung, Won-Kyong;Hwang, Yun-Seok;Park, Dong-Cheon;Cho, Bong-Suk
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.49-59
    • /
    • 2016
  • Steel slag is being recycled into industrial by-products for civil generated inevitably in the seasonal course, road and cement raw materials. However, the field of recycling most of the bottom portion is concentrated in the areas that are required to take advantage of the situation in various fields taking advantage of the steel slag. But various studies to take advantage of the steel slag as aggregate for concrete made for limiting slag was a situation that most of the studies are incomplete research on the suitability of as aggregate for concrete practical relates to an expandable suppressed. In this study, the separation of the slag aggregate according to the production methods to assess the feasibility aggregate for concrete aggregates, including through Steel making slag, a total of seven kinds of steel slag aggregate. Studies show that ordinary concrete, steel slag aggregate for aggregate and on the equally to take advantage of grading, chloride content standards such as to what is lacking, although appropriate aggregate of concrete include the deployment of only in special sectors through the combination was assessed to have a very high.

Seismic Performance Evaluation of 3 Story OMRCF Based on Scaled Model Testing (축소모델실험에 의한 철근콘크리트 3층 보통모멘트골조의 구조 성능 평가)

  • Han Sang-Whan;Kwon Gun-Up
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.673-678
    • /
    • 2005
  • ACI 318 (1999) defines three types of moment frames: Ordinary Moment Resisting Concrete Frame (OMRCF), Intermediate Moment Resisting Concrete Frame (IMRCF), and Special Moment Resisting Concrete Frame (SMRCF). OMRCF is the most popular type of moment frame in mild seismic zones that requires the least detail and design requirements. This study focuses on the seismic performance of Ordinary Moment Resisting Concrete Frames (OMRCF) designed only for gravity loads. For this purpose a 3-story OMRCF was designed in compliance with the minimum design requirements in ACI 318 (1999). An one third 3 story specimen was made and tested. For scaled model, the similitude law of true replica was applied. The specimen was loaded with quasi-static reversed cyclic lateral loading. The overall behavior of OMRCF is quite stable without abrupt strength degradation. It is found that tested frame has the base shear strength larger than the design base shear for seismic zone 1, 2A and 2B calculated using UBC 1997.