• Title/Summary/Keyword: 트윗

Search Result 169, Processing Time 0.022 seconds

Developing a Sentiment Analysing and Tagging System (감성 분석 및 감성 정보 부착 시스템 구현)

  • Lee, Hyun Gyu;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.8
    • /
    • pp.377-384
    • /
    • 2016
  • Our goal is to build the system which collects tweets from Twitter, analyzes the sentiment of each tweet, and helps users build a sentiment tagged corpus semi-automatically. After collecting tweets with the Twitter API, we analyzes the sentiments of them with a sentiment dictionary. With the proposed system, users can verify the results of the system and can insert new sentimental words or dependency relations where sentiment information exist. Sentiment information is tagged with the JSON structure which is useful for building or accessing the corpus. With a test set, the system shows about 76% on the accuracy in analysing the sentiments of sentences as positive, neutral, or negative.

The Study on the Activation of Public Library Services Utilizing Twitter (트위터를 활용한 공공도서관 서비스 활성화 방안 연구)

  • Oh, Eui-Kyung
    • Journal of Information Management
    • /
    • v.43 no.2
    • /
    • pp.133-150
    • /
    • 2012
  • This study showed the activation of public library services utilizing twitter. Top five American public library twitter's 1,373 tweets collected, analyzed by content types and examined applicability into public library services. Based on the results, it suggested that public library services can be activated by auto-tweeting informations within home page, re-tweeting of timely informations, generating HASH tag, using diverse social medias, active re-tweeting/replying, and utilizing twitter programs such as twit-bot. Finally, the study proposed that evaluations about twitter services such as satisfaction survey should be carried out.

Sentiment Analysis of Foot-and-mouth Disease using Tweet Keyword Network (트윗 키워드 네트워크를 이용한 구제역의 감성분석)

  • Chae, Heechan;Lee, Jonguk;Choi, Yoona;Park, Daihee;Chung, Yongwha
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.267-270
    • /
    • 2018
  • 구제역으로 인하여 국내 축산업계 및 관련 산업분야는 매년 막대한 피해를 입고 있다. 구제역과 관련한 다양한 학술적 연구들이 현재 진행되고는 있으나, 구제역의 발병에 따른 사회적 파급효과에 관한 공학적 분석 연구는 매우 제한적이다. 본 연구에서는 구제역에 관한 일반 시민들의 감성적 반응을 텍스트 마이닝 방법론을 사용하여 분석하는 체계적인 방법론을 제안한다. 제안하는 시스템은 먼저, 트위터에 게시된 트윗 중 구제역과 관련된 데이터를 수집한 후, 감성사전을 기반으로 극성탐지 과정을 거친다. 둘째, 토픽 모델링의 대표적인 기법 중 하나인 LDA를 활용하여 트윗으로 부터 키워드들을 추출하고, 추출된 키워드들로부터 극성별 동시출현 키워드 네트워크를 구성한다. 셋째, 키워드 네트워크을 통해 각 구간별 구제역의 사회적 파급효과를 분석한다. 사례 분석으로써, 2010년 7월부터 2011년 12월까지 국내에서 발생한 구제역에 관한 일반 시민들의 감성적 변화를 분석하였다.

A Method for Detecting Event-location using Relevant Words Clustering in Tweet (트위터에서의 연관어 군집화를 이용한 이벤트 지역 탐지 기법)

  • Ha, Hyunsoo;Woo, Seungmin;Yim, Junyeob;Hwang, Byung-Yeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.680-682
    • /
    • 2015
  • 최근 스마트폰의 보급으로 소셜 네트워크 서비스를 이용하는 사용자들이 급증하였다. 그 중 트위터는 정보의 빠른 전파력과 확산성으로 인해 현실에서 발생한 이벤트를 탐지하는 도구로 활용하는 것이 가능하다. 따라서 트위터 사용자 개개인을 하나의 센서로 가정하고 그들이 작성한 트윗 텍스트를 분석한다면 이벤트 탐지의 도구로써 활용할 수 있다. 이와 관련된 연구들은 이벤트 발생 위치를 추적하기 위해 GPS좌표를 이용하지만 트위터 사용자들이 위치정보 공개에 회의적인 점을 감안하면 명확한 한계점으로 제시될 수 있다. 이에 본 논문에서는 트위터에서 제공하는 위치정보를 이용하지 않고, 트윗 텍스트에서 위치정보를 추적하는 방법을 제시하였다. 트윗 텍스트에서 키워드간의 관계를 고려하여 이벤트의 사실여부를 결정하였으며, 실험을 통해 기존 매체들보다 빠른 탐지를 보임으로써 제안된 시스템의 필요성을 보였다.

Location Inference of Twitter Users using Timeline Data (타임라인데이터를 이용한 트위터 사용자의 거주 지역 유추방법)

  • Kang, Ae Tti;Kang, Young Ok
    • Spatial Information Research
    • /
    • v.23 no.2
    • /
    • pp.69-81
    • /
    • 2015
  • If one can infer the residential area of SNS users by analyzing the SNS big data, it can be an alternative by replacing the spatial big data researches which result from the location sparsity and ecological error. In this study, we developed the way of utilizing the daily life activity pattern, which can be found from timeline data of tweet users, to infer the residential areas of tweet users. We recognized the daily life activity pattern of tweet users from user's movement pattern and the regional cognition words that users text in tweet. The models based on user's movement and text are named as the daily movement pattern model and the daily activity field model, respectively. And then we selected the variables which are going to be utilized in each model. We defined the dependent variables as 0, if the residential areas that users tweet mainly are their home location(HL) and as 1, vice versa. According to our results, performed by the discriminant analysis, the hit ratio of the two models was 67.5%, 57.5% respectively. We tested both models by using the timeline data of the stress-related tweets. As a result, we inferred the residential areas of 5,301 users out of 48,235 users and could obtain 9,606 stress-related tweets with residential area. The results shows about 44 times increase by comparing to the geo-tagged tweets counts. We think that the methodology we have used in this study can be used not only to secure more location data in the study of SNS big data, but also to link the SNS big data with regional statistics in order to analyze the regional phenomenon.

A Generation and Matching Method of Normal-Transient Dictionary for Realtime Topic Detection (실시간 이슈 탐지를 위한 일반-급상승 단어사전 생성 및 매칭 기법)

  • Choi, Bongjun;Lee, Hanjoo;Yong, Wooseok;Lee, Wonsuk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.5
    • /
    • pp.7-18
    • /
    • 2017
  • Recently, the number of SNS user has rapidly increased due to smart device industry development and also the amount of generated data is exponentially increasing. In the twitter, Text data generated by user is a key issue to research because it involves events, accidents, reputations of products, and brand images. Twitter has become a channel for users to receive and exchange information. An important characteristic of Twitter is its realtime. Earthquakes, floods and suicides event among the various events should be analyzed rapidly for immediately applying to events. It is necessary to collect tweets related to the event in order to analyze the events. But it is difficult to find all tweets related to the event using normal keywords. In order to solve such a mentioned above, this paper proposes A Generation and Matching Method of Normal-Transient Dictionary for realtime topic detection. Normal dictionaries consist of general keywords(event: suicide-death-loop, death, die, hang oneself, etc) related to events. Whereas transient dictionaries consist of transient keywords(event: suicide-names and information of celebrities, information of social issues) related to events. Experimental results show that matching method using two dictionary finds more tweets related to the event than a simple keyword search.

Analysis of the Time-dependent Relation between TV Ratings and the Content of Microblogs (TV 시청률과 마이크로블로그 내용어와의 시간대별 관계 분석)

  • Choeh, Joon Yeon;Baek, Haedeuk;Choi, Jinho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.163-176
    • /
    • 2014
  • Social media is becoming the platform for users to communicate their activities, status, emotions, and experiences to other people. In recent years, microblogs, such as Twitter, have gained in popularity because of its ease of use, speed, and reach. Compared to a conventional web blog, a microblog lowers users' efforts and investment for content generation by recommending shorter posts. There has been a lot research into capturing the social phenomena and analyzing the chatter of microblogs. However, measuring television ratings has been given little attention so far. Currently, the most common method to measure TV ratings uses an electronic metering device installed in a small number of sampled households. Microblogs allow users to post short messages, share daily updates, and conveniently keep in touch. In a similar way, microblog users are interacting with each other while watching television or movies, or visiting a new place. In order to measure TV ratings, some features are significant during certain hours of the day, or days of the week, whereas these same features are meaningless during other time periods. Thus, the importance of features can change during the day, and a model capturing the time sensitive relevance is required to estimate TV ratings. Therefore, modeling time-related characteristics of features should be a key when measuring the TV ratings through microblogs. We show that capturing time-dependency of features in measuring TV ratings is vitally necessary for improving their accuracy. To explore the relationship between the content of microblogs and TV ratings, we collected Twitter data using the Get Search component of the Twitter REST API from January 2013 to October 2013. There are about 300 thousand posts in our data set for the experiment. After excluding data such as adverting or promoted tweets, we selected 149 thousand tweets for analysis. The number of tweets reaches its maximum level on the broadcasting day and increases rapidly around the broadcasting time. This result is stems from the characteristics of the public channel, which broadcasts the program at the predetermined time. From our analysis, we find that count-based features such as the number of tweets or retweets have a low correlation with TV ratings. This result implies that a simple tweet rate does not reflect the satisfaction or response to the TV programs. Content-based features extracted from the content of tweets have a relatively high correlation with TV ratings. Further, some emoticons or newly coined words that are not tagged in the morpheme extraction process have a strong relationship with TV ratings. We find that there is a time-dependency in the correlation of features between the before and after broadcasting time. Since the TV program is broadcast at the predetermined time regularly, users post tweets expressing their expectation for the program or disappointment over not being able to watch the program. The highly correlated features before the broadcast are different from the features after broadcasting. This result explains that the relevance of words with TV programs can change according to the time of the tweets. Among the 336 words that fulfill the minimum requirements for candidate features, 145 words have the highest correlation before the broadcasting time, whereas 68 words reach the highest correlation after broadcasting. Interestingly, some words that express the impossibility of watching the program show a high relevance, despite containing a negative meaning. Understanding the time-dependency of features can be helpful in improving the accuracy of TV ratings measurement. This research contributes a basis to estimate the response to or satisfaction with the broadcasted programs using the time dependency of words in Twitter chatter. More research is needed to refine the methodology for predicting or measuring TV ratings.

Coocurrence Relation Analysis and Visualization in Tweet for Food Safety Domain (식품안전 관련 트위터 정보의 연관 관계 분석 및 시각화)

  • So, Hyun-Su;Kang, Seung-Shik;Oh, Se-Wook
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.305-306
    • /
    • 2016
  • 식품안전 사고가 발생했을 때 뉴스, 인터넷 기사를 통해 정보를 인지하기 전에 그 음식을 섭취하는 경우가 발생하는 문제점 최소화하기 위하여 실시간 트윗 분석으로 현재 발생한 식품안전 키워드와 어느 지역에서 발생했는지를 신속하게 파악하고, 키워드 연관관계 분석 프로그램을 활용하여 정확한 정보를 추출한다. 이와 더불어, SNS 등 다양한 정보 소스로부터 추출한 정보를 간단명료하게 파악하기 위해서 워드 클라우드 등 데이터 시각화 기법을 활용하여 시각화로 정보를 제공한다. 이 기법은 식품안전 뿐만 아니라 최근 발생한 콜레라 감염 발생과 같은 문제를 해결하기 위한 방법으로 활용될 수 있을 것이다.

  • PDF

Sentiment Classification for Korean Tweets via Semi-Supervised Learning (준지도 학습을 이용한 트윗 감정 분류)

  • Seo, Hyeong-Won;Noh, Kyung-Mok;Cheon, Min-A;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.123-125
    • /
    • 2012
  • 본 논문은 기계 학습을 이용한 감정 분류에 필요한 학습 말뭉치를 효율적으로 확장하는 방법에 대하여 기술한다. 학습 말뭉치는 일반적으로 그에 알맞은 레이블을 정해야 하는데, 그 양이 어마어마하기 때문에 이 과정을 일일이 사람이 할 수는 없다. 그에 대한 해결책으로써 이미 많은 준지도학습 방법이 연구되었고, 그것을 트윗이라는 짧은 문서를 감정 분류하는 것에 적용해도 감정 문서 분류기의 성능이 좋다는 결과를 확인하였다.

  • PDF

Combining Deep Learning Models for Crisis-Related Tweet Classification (재난관련 트윗 분류를 위한 딥 러닝 결합 모델)

  • Choi, Won-Gyu;Lee, Kyung-Soon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.649-651
    • /
    • 2018
  • 본 논문에서는 CNN에서 클래스 활성화 맵과 원샷 러닝을 결합하여 트위터 분류를 위한 딥 러닝 모델을 제안한다. 클래스 활성화 맵은 트윗 분류에 대한 분류 주제와 연관된 핵심 어휘를 추출하고 강조 표시하도록 사용되었다. 특히 작은 학습 데이터 셋을 사용하여 다중 클래스 분류의 성능을 향상시키기 위해 원샷 러닝 방법을 적용한다. 제안하는 방법을 검증하기위해 TREC 2018 태스크의 사건 스트림(TREC-IS) 학습데이터를 사용하여 비교실험을 했다. 실험 결과에서 CNN 기본 모델의 정확도는 58.1%이고 제안 방법의 정확도는 69.6%로 성능이 향상됨을 보였다.

  • PDF