• Title/Summary/Keyword: 트윗

Search Result 169, Processing Time 0.027 seconds

Preliminary Research for Korean Twitter User Analysis Focusing on Extreme Heavy User's Twitter Log (국내 트위터 유저 분석을 위한 예비연구 )

  • Jung, Hye-Lan;Ji, Sook-Young;Lee, Joong-Seek
    • Journal of the HCI Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • Twitter has been continuously growing since October, 2006. Especially, not only the users and the number of messages have been increasing but also a new concept in social networking called 'micro blogging' has diffused. Within Korea, service such as 'me2day' has already been introduced and the improvement of internet accessibility within mobile devices is expected to expand the 'micro blogs'. In this point, this research is executed to study the new medium, 'micro blog'. To do so, we collected and analyzed Twitter logs of Korean users. Especially, we were curious about the extreme heavy users using Twitter, despite of the linguistic and cultural barrier of the foreign service. Who they are, why and how they use the 'micro blog'. First, we reviewed the general aspect of followers and messages by collecting a certain number of random samples. Using the Lorenz curve we found out that there was the imbalance within the users and based on this phenomenon we deducted an extreme heavy user group. In order to perform further analysis, log analysis was performed on the extreme heavy users. As the result, the users used multiple mobile and desktop 'Twitter' clients. The usage pattern was similar to that of internet usage time but was used during their "micro" time. The users using 'Twitter' not only to spread messages about important information, special events and emotions, but also as a habitual 'chatting tool' to express ordinary personal chats similar to SMS and IM services. In this research, it is proved that 68% of the total messages were ordinary personal chats. Also, with 24% of the total messages were retweets, we were able to find out that virtually connected 'people' and 'relationships' acted as the dominant trigger of their articulation.

  • PDF

Role of unstructured data on water surface elevation prediction with LSTM: case study on Jamsu Bridge, Korea (LSTM 기법을 활용한 수위 예측 알고리즘 개발 시 비정형자료의 역할에 관한 연구: 잠수교 사례)

  • Lee, Seung Yeon;Yoo, Hyung Ju;Lee, Seung Oh
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1195-1204
    • /
    • 2021
  • Recently, local torrential rain have become more frequent and severe due to abnormal climate conditions, causing a surge in human and properties damage including infrastructures along the river. In this study, water surface elevation prediction algorithm was developed using the LSTM (Long Short-term Memory) technique specialized for time series data among Machine Learning to estimate and prevent flooding of the facilities. The study area is Jamsu Bridge, the study period is 6 years (2015~2020) of June, July and August and the water surface elevation of the Jamsu Bridge after 3 hours was predicted. Input data set is composed of the water surface elevation of Jamsu Bridge (EL.m), the amount of discharge from Paldang Dam (m3/s), the tide level of Ganghwa Bridge (cm) and the number of tweets in Seoul. Complementary data were constructed by using not only structured data mainly used in precedent research but also unstructured data constructed through wordcloud, and the role of unstructured data was presented through comparison and analysis of whether or not unstructured data was used. When predicting the water surface elevation of the Jamsu Bridge, the accuracy of prediction was improved and realized that complementary data could be conservative alerts to reduce casualties. In this study, it was concluded that the use of complementary data was relatively effective in providing the user's safety and convenience of riverside infrastructure. In the future, more accurate water surface elevation prediction would be expected through the addition of types of unstructured data or detailed pre-processing of input data.

Personalized Clothing and Food Recommendation System Based on Emotions and Weather (감정과 날씨에 따른 개인 맞춤형 옷 및 음식 추천 시스템)

  • Ugli, Sadriddinov Ilkhomjon Rovshan;Park, Doo-Soon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.447-454
    • /
    • 2022
  • In the era of the 4th industrial revolution, we are living in a flood of information. It is very difficult and complicated to find the information people need in such an environment. Therefore, in the flood of information, a recommendation system is essential. Among these recommendation systems, many studies have been conducted on each recommendation system for movies, music, food, and clothes. To date, most personalized recommendation systems have recommended clothes, books, or movies by checking individual tendencies such as age, genre, region, and gender. Future generations will want to be recommended clothes, books, and movies at once by checking age, genre, region, and gender. In this paper, we propose a recommendation system that recommends personalized clothes and food at once according to the user's emotions and weather. We obtained user data from Twitter of social media and analyzed this data as user's basic emotion according to Paul Eckman's theory. The basic emotions obtained in this way were converted into colors by applying Hayashi's Quantification Method III, and these colors were expressed as recommended clothes colors. Also, the type of clothing is recommended using the weather information of the visualcrossing.com API. In addition, various foods are recommended according to the contents of comfort food according to emotions.

A Study on the Altmetrics of the Papers of Library and Information Science Researchers Published in International Journals (국제 학술지에 발표된 문헌정보학 연구자 논문의 알트메트릭스에 관한 연구)

  • Jane Cho
    • Journal of Korean Library and Information Science Society
    • /
    • v.53 no.4
    • /
    • pp.143-162
    • /
    • 2022
  • Altmetrics is an alternative impact evaluation index that evaluates the social interest in the research performance of individuals or institutions in universities, research institutions, and research fund support institutions. This study empirically analyzed what kind of attention a papers of domestic library and information science researchers published in an international academic journal was receiving in the international community using Altmetric explorer. As a result of the analysis, 230 papers were tracked. The average Altmetric Attention Score (AAS) was 6.63, but there were 2 papers that received overwhelming attention (over 170 points) as they were mentioned in news report and Twitter. Second, there was a tendency for high AAS to appear in cases where a domestic researcher participated as a co-author and the main author belonged to an overseas institution, and in the case where the research funds were supported by foreign government agencies. In addition to the field of the library information science or information system, the papers classified as the field of public health service and education showed high AAS, and it was confirmed that these papers were published in the journals of various fields such as life science. Finally, it was confirmed that there was a weak correlation of r =0.25 between the AAS and the number of citations of the analyzed paper, but a strong correlation of r =0.68 between the number of Mendeley readers and the number of citations.

A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier (영화 리뷰 감성분석을 위한 텍스트 마이닝 기반 감성 분류기 구축)

  • Kim, Yuyoung;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.71-89
    • /
    • 2016
  • Sentiment analysis is used for identifying emotions or sentiments embedded in the user generated data such as customer reviews from blogs, social network services, and so on. Various research fields such as computer science and business management can take advantage of this feature to analyze customer-generated opinions. In previous studies, the star rating of a review is regarded as the same as sentiment embedded in the text. However, it does not always correspond to the sentiment polarity. Due to this supposition, previous studies have some limitations in their accuracy. To solve this issue, the present study uses a supervised sentiment classification model to measure a more accurate sentiment polarity. This study aims to propose an advanced sentiment classifier and to discover the correlation between movie reviews and box-office success. The advanced sentiment classifier is based on two supervised machine learning techniques, the Support Vector Machines (SVM) and Feedforward Neural Network (FNN). The sentiment scores of the movie reviews are measured by the sentiment classifier and are analyzed by statistical correlations between movie reviews and box-office success. Movie reviews are collected along with a star-rate. The dataset used in this study consists of 1,258,538 reviews from 175 films gathered from Naver Movie website (movie.naver.com). The results show that the proposed sentiment classifier outperforms Naive Bayes (NB) classifier as its accuracy is about 6% higher than NB. Furthermore, the results indicate that there are positive correlations between the star-rate and the number of audiences, which can be regarded as the box-office success of a movie. The study also shows that there is the mild, positive correlation between the sentiment scores estimated by the classifier and the number of audiences. To verify the applicability of the sentiment scores, an independent sample t-test was conducted. For this, the movies were divided into two groups using the average of sentiment scores. The two groups are significantly different in terms of the star-rated scores.

A Method for Evaluating News Value based on Supply and Demand of Information Using Text Analysis (텍스트 분석을 활용한 정보의 수요 공급 기반 뉴스 가치 평가 방안)

  • Lee, Donghoon;Choi, Hochang;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.45-67
    • /
    • 2016
  • Given the recent development of smart devices, users are producing, sharing, and acquiring a variety of information via the Internet and social network services (SNSs). Because users tend to use multiple media simultaneously according to their goals and preferences, domestic SNS users use around 2.09 media concurrently on average. Since the information provided by such media is usually textually represented, recent studies have been actively conducting textual analysis in order to understand users more deeply. Earlier studies using textual analysis focused on analyzing a document's contents without substantive consideration of the diverse characteristics of the source medium. However, current studies argue that analytical and interpretive approaches should be applied differently according to the characteristics of a document's source. Documents can be classified into the following types: informative documents for delivering information, expressive documents for expressing emotions and aesthetics, operational documents for inducing the recipient's behavior, and audiovisual media documents for supplementing the above three functions through images and music. Further, documents can be classified according to their contents, which comprise facts, concepts, procedures, principles, rules, stories, opinions, and descriptions. Documents have unique characteristics according to the source media by which they are distributed. In terms of newspapers, only highly trained people tend to write articles for public dissemination. In contrast, with SNSs, various types of users can freely write any message and such messages are distributed in an unpredictable way. Again, in the case of newspapers, each article exists independently and does not tend to have any relation to other articles. However, messages (original tweets) on Twitter, for example, are highly organized and regularly duplicated and repeated through replies and retweets. There have been many studies focusing on the different characteristics between newspapers and SNSs. However, it is difficult to find a study that focuses on the difference between the two media from the perspective of supply and demand. We can regard the articles of newspapers as a kind of information supply, whereas messages on various SNSs represent a demand for information. By investigating traditional newspapers and SNSs from the perspective of supply and demand of information, we can explore and explain the information dilemma more clearly. For example, there may be superfluous issues that are heavily reported in newspaper articles despite the fact that users seldom have much interest in these issues. Such overproduced information is not only a waste of media resources but also makes it difficult to find valuable, in-demand information. Further, some issues that are covered by only a few newspapers may be of high interest to SNS users. To alleviate the deleterious effects of information asymmetries, it is necessary to analyze the supply and demand of each information source and, accordingly, provide information flexibly. Such an approach would allow the value of information to be explored and approximated on the basis of the supply-demand balance. Conceptually, this is very similar to the price of goods or services being determined by the supply-demand relationship. Adopting this concept, media companies could focus on the production of highly in-demand issues that are in short supply. In this study, we selected Internet news sites and Twitter as representative media for investigating information supply and demand, respectively. We present the notion of News Value Index (NVI), which evaluates the value of news information in terms of the magnitude of Twitter messages associated with it. In addition, we visualize the change of information value over time using the NVI. We conducted an analysis using 387,014 news articles and 31,674,795 Twitter messages. The analysis results revealed interesting patterns: most issues show lower NVI than average of the whole issue, whereas a few issues show steadily higher NVI than the average.

The Brand Personality Effect: Communicating Brand Personality on Twitter and its Influence on Online Community Engagement (브랜드 개성 효과: 트위터 상의 브랜드 개성 전달이 온라인 커뮤니티 참여에 미치는 영향)

  • Cruz, Ruth Angelie B.;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.67-101
    • /
    • 2014
  • The use of new technology greatly shapes the marketing strategies used by companies to engage their consumers. Among these new technologies, social media is used to reach out to the organization's audience online. One of the most popular social media channels to date is the microblogging platform Twitter. With 500 million tweets sent on average daily, the microblogging platform is definitely a rich source of data for researchers, and a lucrative marketing medium for companies. Nonetheless, one of the challenges for companies in developing an effective Twitter campaign is the limited theoretical and empirical evidence on the proper organizational usage of Twitter despite its potential advantages for a firm's external communications. The current study aims to provide empirical evidence on how firms can utilize Twitter effectively in their marketing communications using the association between brand personality and brand engagement that several branding researchers propose. The study extends Aaker's previous empirical work on brand personality by applying the Brand Personality Scale to explore whether Twitter brand communities convey distinctive brand personalities online and its influence on the communities' level or intensity of consumer engagement and sentiment quality. Moreover, the moderating effect of the product involvement construct in consumer engagement is also measured. By collecting data for a period of eight weeks using the publicly available Twitter application programming interface (API) from 23 accounts of Twitter-verified business-to-consumer (B2C) brands, we analyze the validity of the paper's hypothesis by using computerized content analysis and opinion mining. The study is the first to compare Twitter marketing across organizations using the brand personality concept. It demonstrates a potential basis for Twitter strategies and discusses the benefits of these strategies, thus providing a framework of analysis for Twitter practice and strategic direction for companies developing their use of Twitter to communicate with their followers on this social media platform. This study has four specific research objectives. The first objective is to examine the applicability of brand personality dimensions used in marketing research to online brand communities on Twitter. The second is to establish a connection between the congruence of offline and online brand personalities in building a successful social media brand community. Third, we test the moderating effect of product involvement in the effect of brand personality on brand community engagement. Lastly, we investigate the sentiment quality of consumer messages to the firms that succeed in communicating their brands' personalities on Twitter.

A phenomenon Study on Acceptance Universe of K-pop Audience : Focused on Group Aespa's Universe Case (K-pop 수용자의 세계관 수용 현상 연구 : 그룹 에스파의 세계관 사례를 중심으로)

  • Kim, Nakyung
    • Trans-
    • /
    • v.12
    • /
    • pp.173-222
    • /
    • 2022
  • This thesis examines the 'universe' acceptance phenomenon, currently used as a content strategy in the K-pop field, from the perspective of K-pop audiences, and then attempts to identify their experience of acceptance and the meaning of the universe. For this, tweets related to the universe acceptance experience of Aespa, the group utilizing the universe as a content strategy the most actively, were collected, and this data was analyzed according to a phenomenological approach, an approach to explore the structure of personal experience and the essence of a phenomenon. As a result of analyzing using Moustakas' method, the semantic structure of the universe acceptance phenomenon of K-pop audiences was derived based on 21 thematic units. It was found that current K-pop audiences are experiencing active cultural consumption rather than unilateral or passive through acceptance of the universe. This means that K-pop audiences have the characteristics of active audiences that produce meaning, interact with other fans, and exert influence on outside of community. At the same time, these characteristics affect acceptance of the universe. Simultaneously, through active acceptance experience, it is found that K-pop audiences give a new meaning in the K-pop universe, as "marketing assets", "fandom community assets", and "K-pop industry expansion assets." Among them, the recognition of 'marketing assets' was reaffirmed as a basis for supporting related previous studies. In addition, it derived the new values of the universe in the K-pop field by discovering the meaning of "fandom's specific assets" and "assets of the K-pop industry for expansion". These meanings had not been found that previous studies from the producers' point of view. And then, for the purpose of expanding the value of the universe in the future, it was discussed the direction of the new meaning of the universe. Finally, this study is meaningful in that it revealed the semantic structure of the universe acceptance phenomenon and discovered a new meaning of the universe in the K-pop field. Additionally, it was intended to contribute to expanding the field of research by suggesting various follow-up studies from various perspectives.

Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques (텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석)

  • Bae, Jung-Hwan;Son, Ji-Eun;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.141-156
    • /
    • 2013
  • Social media is a representative form of the Web 2.0 that shapes the change of a user's information behavior by allowing users to produce their own contents without any expert skills. In particular, as a new communication medium, it has a profound impact on the social change by enabling users to communicate with the masses and acquaintances their opinions and thoughts. Social media data plays a significant role in an emerging Big Data arena. A variety of research areas such as social network analysis, opinion mining, and so on, therefore, have paid attention to discover meaningful information from vast amounts of data buried in social media. Social media has recently become main foci to the field of Information Retrieval and Text Mining because not only it produces massive unstructured textual data in real-time but also it serves as an influential channel for opinion leading. But most of the previous studies have adopted broad-brush and limited approaches. These approaches have made it difficult to find and analyze new information. To overcome these limitations, we developed a real-time Twitter trend mining system to capture the trend in real-time processing big stream datasets of Twitter. The system offers the functions of term co-occurrence retrieval, visualization of Twitter users by query, similarity calculation between two users, topic modeling to keep track of changes of topical trend, and mention-based user network analysis. In addition, we conducted a case study on the 2012 Korean presidential election. We collected 1,737,969 tweets which contain candidates' name and election on Twitter in Korea (http://www.twitter.com/) for one month in 2012 (October 1 to October 31). The case study shows that the system provides useful information and detects the trend of society effectively. The system also retrieves the list of terms co-occurred by given query terms. We compare the results of term co-occurrence retrieval by giving influential candidates' name, 'Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn' as query terms. General terms which are related to presidential election such as 'Presidential Election', 'Proclamation in Support', Public opinion poll' appear frequently. Also the results show specific terms that differentiate each candidate's feature such as 'Park Jung Hee' and 'Yuk Young Su' from the query 'Guen Hae Park', 'a single candidacy agreement' and 'Time of voting extension' from the query 'Jae In Moon' and 'a single candidacy agreement' and 'down contract' from the query 'Chul Su Ahn'. Our system not only extracts 10 topics along with related terms but also shows topics' dynamic changes over time by employing the multinomial Latent Dirichlet Allocation technique. Each topic can show one of two types of patterns-Rising tendency and Falling tendencydepending on the change of the probability distribution. To determine the relationship between topic trends in Twitter and social issues in the real world, we compare topic trends with related news articles. We are able to identify that Twitter can track the issue faster than the other media, newspapers. The user network in Twitter is different from those of other social media because of distinctive characteristics of making relationships in Twitter. Twitter users can make their relationships by exchanging mentions. We visualize and analyze mention based networks of 136,754 users. We put three candidates' name as query terms-Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn'. The results show that Twitter users mention all candidates' name regardless of their political tendencies. This case study discloses that Twitter could be an effective tool to detect and predict dynamic changes of social issues, and mention-based user networks could show different aspects of user behavior as a unique network that is uniquely found in Twitter.