• Title/Summary/Keyword: 트리 마이닝

Search Result 129, Processing Time 0.024 seconds

Classifying and Characterizing the Types of Gentrified Commercial Districts Based on Sense of Place Using Big Data: Focusing on 14 Districts in Seoul (빅데이터를 활용한 젠트리피케이션 상권의 장소성 분류와 특성 분석 -서울시 14개 주요상권을 중심으로-)

  • Young-Jae Kim;In Kwon Park
    • Journal of the Korean Regional Science Association
    • /
    • v.39 no.1
    • /
    • pp.3-20
    • /
    • 2023
  • This study aims to categorize the 14 major gentrified commercial areas of Seoul and analyze their characteristics based on their sense of place. To achieve this, we conducted hierarchical cluster analysis using text data collected from Naver Blog. We divided the districts into two dimensions: "experience" and "feature" and analyzed their characteristics using LDA (Latent Dirichlet Allocation) of the text data and statistical data collected from Seoul Open Data Square. As a result, we classified the commercial districts of Seoul into 5 categories: 'theater district,' 'traditional cultural district,' 'female-beauty district,' 'exclusive restaurant and medical district,' and 'trend-leading district.' The findings of this study are expected to provide valuable insights for policy-makers to develop more efficient and suitable commercial policies.

IRFP-tree: Intersection Rule Based FP-tree (IRFP-tree(Intersection Rule Based FP-tree): 메모리 효율성을 향상시키기 위해 교집합 규칙 기반의 패러다임을 적용한 FP-tree)

  • Lee, Jung-Hun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.3
    • /
    • pp.155-164
    • /
    • 2016
  • For frequency pattern analysis of large databases, the new tree-based frequency pattern analysis algorithm which can compensate for the disadvantages of the Apriori method has been variously studied. In frequency pattern tree, the number of nodes is associated with memory allocation, but also affects memory resource consumption and processing speed of the growth. Therefore, reducing the number of nodes in the tree is very important in the frequency pattern mining. However, the absolute criteria which need to order the transaction items for construction frequency pattern tree has lowered the compression ratio of the tree nodes. But most of the frequency based tree construction methods adapted the absolute criteria. FP-tree is typically frequency pattern tree structure which is an extended prefix-tree structure for storing compressed frequent crucial information about frequent patterns. For construction the tree, all the frequent items in different transactions are sorted according to the absolute criteria, frequency descending order. CanTree also need to absolute criteria, canonical order, to construct the tree. In this paper, we proposed a novel frequency pattern tree construction method that does not use the absolute criteria, IRFP-tree algorithm. IRFP-tree(Intersection Rule based FP-tree). IRFP-tree is constituted with the new paradigm of the intersection rule without the use of the absolute criteria. It increased the compression ratio of the tree nodes, and reduced the tree construction time. Our method has the additional advantage that it provides incremental mining. The reported test result demonstrate the applicability and effectiveness of the proposed approach.

A study on integration of semantic topic based Knowledge model (의미적 토픽 기반 지식모델의 통합에 관한 연구)

  • Chun, Seung-Su;Lee, Sang-Jin;Bae, Sang-Tea
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.181-183
    • /
    • 2012
  • 최근 자연어 및 정형언어 처리, 인공지능 알고리즘 등을 활용한 효율적인 의미 기반 지식모델의 생성과 분석 방법이 제시되고 있다. 이러한 의미 기반 지식모델은 효율적 의사결정트리(Decision Making Tree)와 특정 상황에 대한 체계적인 문제해결(Problem Solving) 경로 분석에 활용된다. 특히 다양한 복잡계 및 사회 연계망 분석에 있어 정적 지표 생성과 회귀 분석, 행위적 모델을 통한 추이분석, 거시예측을 지원하는 모의실험(Simulation) 모형의 기반이 된다. 본 연구에서는 이러한 의미 기반 지식모델을 통합에 있어 텍스트 마이닝을 통해 도출된 토픽(Topic) 모델 간 통합 방법과 정형적 알고리즘을 제시한다. 이를 위해 먼저, 텍스트 마이닝을 통해 도출되는 키워드 맵을 동치적 지식맵으로 변환하고 이를 의미적 지식모델로 통합하는 방법을 설명한다. 또한 키워드 맵으로부터 유의미한 토픽 맵을 투영하는 방법과 의미적 동치 모델을 유도하는 알고리즘을 제안한다. 통합된 의미 기반 지식모델은 토픽 간의 구조적 규칙과 정도 중심성, 근접 중심성, 매개 중심성 등 관계적 의미분석이 가능하며 대규모 비정형 문서의 의미 분석과 활용에 실질적인 기반 연구가 될 수 있다.

The Goods Recommendation System based on modified FP-Tree Algorithm (변형된 FP-Tree를 기반한 상품 추천 시스템)

  • Kim, Jong-Hee;Jung, Soon-Key
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.205-213
    • /
    • 2010
  • This study uses the FP-tree algorithm, one of the mining techniques. This study is an attempt to suggest a new recommended system using a modified FP-tree algorithm which yields an association rule based on frequent 2-itemsets extracted from the transaction database. The modified recommended system consists of a pre-processing module, a learning module, a recommendation module and an evaluation module. The study first makes an assessment of the modified recommended system with respect to the precision rate, recall rate, F-measure, success rate, and recommending time. Then, the efficiency of the system is compared against other recommended systems utilizing the sequential pattern mining. When compared with other recommended systems utilizing the sequential pattern mining, the modified recommended system exhibits 5 times more efficiency in learning, and 20% improvement in the recommending capacity. This result proves that the modified system has more validity than recommended systems utilizing the sequential pattern mining.

A study on integrating and discovery of semantic based knowledge model (의미 기반의 지식모델 통합과 탐색에 관한 연구)

  • Chun, Seung-Su
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.99-106
    • /
    • 2014
  • Generation and analysis methods have been proposed in recent years, such as using a natural language and formal language processing, artificial intelligence algorithms based knowledge model is effective meaning. its semantic based knowledge model has been used effective decision making tree and problem solving about specific context. and it was based on static generation and regression analysis, trend analysis with behavioral model, simulation support for macroeconomic forecasting mode on especially in a variety of complex systems and social network analysis. In this study, in this sense, integrating knowledge-based models, This paper propose a text mining derived from the inter-Topic model Integrated formal methods and Algorithms. First, a method for converting automatically knowledge map is derived from text mining keyword map and integrate it into the semantic knowledge model for this purpose. This paper propose an algorithm to derive a method of projecting a significant topic map from the map and the keyword semantically equivalent model. Integrated semantic-based knowledge model is available.

A Control Path Analysis Mechanism for Workflow Mining (워크플로우 마이닝을 위한 제어 경로 분석 메커니즘)

  • Min Jun-Ki;Kim Kwang-Hoon;Chung Jung-Su
    • Journal of Internet Computing and Services
    • /
    • v.7 no.1
    • /
    • pp.91-99
    • /
    • 2006
  • This paper proposes a control path analysis mechanism to be used in the workflow mining framework maximizing the workflow traceability and re discoverability by analyzing the total sequences of the control path perspective of a workflow model and by rediscovering their runtime enactment history from the workflow log information. The mechanism has two components One is to generate the total sequences of the control paths from a workflow mode by transforming it to a control path decision tree, and the other is to rediscover the runtime enactment history of each control path out of the total sequences from the corresponding workflow's execution logs. Eventually, these rediscovered knowledge and execution history of a workflow model make up a control path oriented intelligence of the workflow model. which ought to be an essential ingredient for maintaining and reengineering the qualify of the workflow model. Based upon the workflow intelligence, it is possible for the workflow model to be gradually refined and finally maximize its qualify by repeatedly redesigning and reengineering during its whole life long time period.

  • PDF

A Study on Monitoring Method of Citizen Opinion based on Big Data : Focused on Gyeonggi Lacal Currency (Gyeonggi Money) (빅데이터 기반 시민의견 모니터링 방안 연구 : "경기지역화폐"를 중심으로)

  • Ahn, Soon-Jae;Lee, Sae-Mi;Ryu, Seung-Ei
    • Journal of Digital Convergence
    • /
    • v.18 no.7
    • /
    • pp.93-99
    • /
    • 2020
  • Text mining is one of the big data analysis methods that extracts meaningful information from atypical large-scale text data. In this study, text mining was used to monitor citizens' opinions on the policies and systems being implemented. We collected 5,108 newspaper articles and 748 online cafe posts related to 'Gyeonggi Lacal Currency' and performed frequency analysis, TF-IDF analysis, association analysis, and word tree visualization analysis. As a result, many articles related to the purpose of introducing local currency, the benefits provided, and the method of use. However, the contents related to the actual use of local currency were written in the online cafe posts. In order to revitalize local currency, the news was involved in the promotion of local currency as an informant. Online cafe posts consisted of the opinions of citizens who are local currency users. SNS and text mining are expected to effectively activate various policies as well as local currency.

Research on Mining Technology for Explainable Decision Making (설명가능한 의사결정을 위한 마이닝 기술)

  • Kyungyong Chung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.186-191
    • /
    • 2023
  • Data processing techniques play a critical role in decision-making, including handling missing and outlier data, prediction, and recommendation models. This requires a clear explanation of the validity, reliability, and accuracy of all processes and results. In addition, it is necessary to solve data problems through explainable models using decision trees, inference, etc., and proceed with model lightweight by considering various types of learning. The multi-layer mining classification method that applies the sixth principle is a method that discovers multidimensional relationships between variables and attributes that occur frequently in transactions after data preprocessing. This explains how to discover significant relationships using mining on transactions and model the data through regression analysis. It develops scalable models and logistic regression models and proposes mining techniques to generate class labels through data cleansing, relevance analysis, data transformation, and data augmentation to make explanatory decisions.

A Spatial Entropy based Decision Tree Method Considering Distribution of Spatial Data (공간 데이터의 분포를 고려한 공간 엔트로피 기반의 의사결정 트리 기법)

  • Jang, Youn-Kyung;You, Byeong-Seob;Lee, Dong-Wook;Cho, Sook-Kyung;Bae, Hae-Young
    • The KIPS Transactions:PartB
    • /
    • v.13B no.7 s.110
    • /
    • pp.643-652
    • /
    • 2006
  • Decision trees are mainly used for the classification and prediction in data mining. The distribution of spatial data and relationships with their neighborhoods are very important when conducting classification for spatial data mining in the real world. Spatial decision trees in previous works have been designed for reflecting spatial data characteristic by rating Euclidean distance. But it only explains the distance of objects in spatial dimension so that it is hard to represent the distribution of spatial data and their relationships. This paper proposes a decision tree based on spatial entropy that represents the distribution of spatial data with the dispersion and dissimilarity. The dispersion presents the distribution of spatial objects within the belonged class. And dissimilarity indicates the distribution and its relationship with other classes. The rate of dispersion by dissimilarity presents that how related spatial distribution and classified data with non-spatial attributes we. Our experiment evaluates accuracy and building time of a decision tree as compared to previous methods. We achieve an improvement in performance by about 18%, 11%, respectively.

Classification of False Alarms based on the Decision Tree for Improving the Performance of Intrusion Detection Systems (침입탐지시스템의 성능향상을 위한 결정트리 기반 오경보 분류)

  • Shin, Moon-Sun;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • v.34 no.6
    • /
    • pp.473-482
    • /
    • 2007
  • Network-based IDS(Intrusion Detection System) gathers network packet data and analyzes them into attack or normal. They raise alarm when possible intrusion happens. But they often output a large amount of low-level of incomplete alert information. Consequently, a large amount of incomplete alert information that can be unmanageable and also be mixed with false alerts can prevent intrusion response systems and security administrator from adequately understanding and analyzing the state of network security, and initiating appropriate response in a timely fashion. So it is important for the security administrator to reduce the redundancy of alerts, integrate and correlate security alerts, construct attack scenarios and present high-level aggregated information. False alarm rate is the ratio between the number of normal connections that are incorrectly misclassified as attacks and the total number of normal connections. In this paper we propose a false alarm classification model to reduce the false alarm rate using classification analysis of data mining techniques. The proposed model can classify the alarms from the intrusion detection systems into false alert or true attack. Our approach is useful to reduce false alerts and to improve the detection rate of network-based intrusion detection systems.